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Abstract— Ultrasonic sensors are ideal for non-destructive 

testing due to its many advantages over conventional sensors. Oil 
and gas pipelines are an area which uses ultrasonic sensors for 
monitoring and detecting the presence corrosion and defects. The 
proposed techniques ultimately aims at providing a continuous 
monitoring system using an array of ultrasonic sensors 
strategically positioned on the surface of the pipeline to predict 
the occurrence of defects rather than just monitoring. The 
sensors used are piezoelectric ultrasonic sensors. The raw sensor 
signal will be first processed using the Discrete Wavelet 
Transform (DWT) as a feature extractor and then classified 
using the powerful learning machine called the Support Vector 
Machine (SVM). Preliminary tests show that the sensors can 
detect the presence of wall thinning in a steel pipe by classifying 
the attenuation and frequency changes of the propagating lamb 
waves. The SVM algorithm was able to classify the signals as 
abnormal in the presence of wall thinning. 
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I. INTRODUCTION  
Ultrasonic waves have been used in detecting defects in pipes, 
tubes and metal plates in many applications [1][2]. In the area 
of oil and gas pipelines, ultrasonic sensors are incorporated in 
many commercial products for monitoring corrosion and 
defects [3]. Ultrasonic waves propagate through the pipeline 
as Lamb waves thus picking up critical information on the 
condition of the pipe. Ultrasonic sensors enable detection 
without any contact with the object regardless of its material, 
nature, color and degree of transparency. The advantages of 
ultrasound detection include: 
• No physical contact with the object to be detected, 

therefore, no wear and detection possible of fragile or 
freshly painted objects, etc. 

• Detection of any material, irrespective of color, at the 
same distance, without adjustment or correction factor. 

• Very good resistance to industrial environments (robust 
products entirely encapsulated in resin). Tough 
environments such as fumes, dust, noisy. 

• Solid-state units: no moving parts in the sensor, therefore, 
service life independent of the number of operating 
cycles. 

 

Currently, an established form of pipeline inspection uses 
smart pigs in a process called pigging [4]. These smart pigs 
travel within the pipeline recording critical information like 
corrosion levels, cracks and structural defects using its 
numerous sensors. Pigs can give pinpoint information on the 
location of defects using techniques like magnetic flux leakage 
and ultrasonic detection [5]. However, using smart pigs in 
pipeline inspection has a few disadvantages. The cost of 
implementing a pigging system can be expensive. More 
importantly, pigs measure the pipeline condition only at the 
instance it is deployed and does not provide continuous 
measurements over time. The proposed techniques aim at 
providing a continuous monitoring system using an array of 
different sensors strategically positioned on the external 
surface of the pipeline. The raw sensor signal will be first 
processed using the Discrete Wavelet Transform (DWT) and 
then classified using the powerful learning algorithm called 
the Support Vector Machines (SVM). 
      The DWT is used here as a feature extraction tool in order 
to single out any unique features in the sensor data. A useful 
property of the DWT is that it compresses signals and by 
doing so, it has the tendency to eliminate high frequency 
noise. The DWT is used here to eliminate noise in the sensor 
signals and also to compress large amounts of real-time sensor 
data for faster processing. The compressed data or the DWT 
coefficients are then used as inputs to the SVM classifier, 
which will fuse the different sensor data together and then 
perform the classification task. The SVM has been widely 
used lately for numerous applications due to its excellent 
generalization ability with small training samples. The SVM 
will be trained with normal and simulated defect conditions 
using an experimental pipeline rig in the laboratory. 
 

II BACKGROUND 

A. Support Vector Machines  
SVM functions by creating a hyperplane that separates a 

set of data containing two classes. According to the SRM 
principle, there will just be one optimal hyperplane, which has 
the maximum distance (called maximum margin) to the 
closest data points of each class as shown in Fig. 1[6]. These 
points, closest to the optimal hyperplane, are called Support 
Vectors (SV). The hyperplane is defined by the equation      
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w.x + b=0,   and therefore the maximal margin can be found 
by minimizing (1). 

                      ½ ||w||2                                                 (1) 
 
 
 
 
 
 
 
 
 

Fig. 1: Optimal Hyperplane and maximum margin for a two class data. 

 
The Optimal Separating Hyperplane can thus be found by 

minimizing Eq. (1) under the constraint Eq.(2) that the 
training data is correctly separated  [7]. 

 
       yi.(xi.w + b) ≥ 1 , ∀ i                               (2) 
 

The concept of the Optimal Separating Hyperplane can be 
generalized for the non-separable case by introducing a cost 
for violating the separation constraints Eq.(2). This can be 
done by introducing positive slack variables ξi in constraints 
Eq.(2), which then become: 

 
        yi.(xi.w + b) ≥ 1 - ξi , ∀ i                        (3) 
 

If an error occurs, the corresponding ξi must exceed unity, 
so Σi ξi is an upper bound for the number of classification 
errors. Hence a logical way to assign an extra cost for errors is 
to change the objective function Eq.(1) to be minimized into: 

 
min { ½ ||w||² + C. (Σi ξi ) }                           (4) 

 
C is a tuning parameter which allows the user to control 

the trade off between maximizing the margin (first term in the 
objective) and classifying the training set without error. 
Minimizing Eq.(4) under constraint in Eq.(3) gives the 
Generalized Optimal Separating Hyperplane. This is a 
Quadratic Programming (QP) problem which can be solved 
here using the method of Lagrange multipliers [8]. 

After performing the required calculations [7], [9], the QP 
problem can be solved by finding the LaGrange multipliers, 
αi, that maximizes the objective function in Eq.(5), 

 
                                                

(5) 
 Since 

the input vectors enter the dual only in form of dot products 
the algorithm can be generalized to non-linear classification 
by mapping the input data into a high dimensional feature 
space via an a priori chosen non-linear mapping function Φ . 
Constructing a separating hyperplane in this feature space 
leads to a non-linear decision boundary in the input space. 
Expensive calculation of dot products in a high-dimensional 
space can be avoided by introducing a kernel function, K in 
Eq. (6). 

       
( ) )()(, jiji xxxxK Φ⋅Φ=                                     (6) 

 
By introducing the kernel function, it is not necessary to 

explicitly know Ф(.). So that the optimization problem in 
Eq.(5) can be translated directly to the more general kernel 
version in Eq. (7), 

                                
       (7) 
            

subject to .  
 

 
The equation for the indicator function, used to classify 

new data (from sensors) is given in Eq.(11) where the new 
data z is classified as class 1 if i>0, and as class 2 if i <0 [10]. 

 
(8)                   

 
 

Note that the summation is not actually performed over all 
training data but rather over the support vectors, because only 
for them do the Lagrange multipliers differ from zero. Fig. 2 
illustrates the SVM data flow, from input data point to the 
final decision value [11]. 
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Fig 2: Diagram of SVM data flow 

 
As such, using the support vector machine we will have 

good generalization and this will enable an efficient and 
accurate classification of the sensor signals. It is this excellent 
generalization that we look for when analyzing sensor signals 
due to the small samples of actual defect data obtainable from 
field studies. In this work, we simulate the abnormal condition 
and therefore introduce an artificial condition not found in real 
lie applications.  

B. Discrete Wavelet Transform 

A discrete wavelet transform (DWT) is basically a wavelet 
transform for which the wavelets are sampled in discrete time. 
The DWT of a signal x is calculated by passing it through a 
series of filters. First the samples are passed through a low 
pass filter with impulse response g, resulting in a convolution 
of the two (9). The signal is also decomposed simultaneously 
using a high-pass filter h (10). 

                                                       
            (9)                                                                                                                          

 

                                                                               
                            (10) 

 

The output of the equations 9 and 10 gives the detail 
coefficients (from the high-pass filter) and approximation 
coefficients (from the low-pass). It is important that the two 
filters are related to each other for efficient computation and 
they are known as a quadrature mirror filter [12]. 

However, since half the frequencies of the signal have now 
been removed, half the samples can be discarded according to 
Nyquist’s rule. The filter outputs are then down sampled by 2 
as illustrated in Fig. 3. This decomposition has halved the time 
resolution since only half of each filter output characterizes 
the signal. However, each output has half the frequency band 

of the input so the frequency resolution has been doubled. The 
coefficients are used as inputs to the SVM [13]. 

 Fig. 3: DWT filter decomposition 

 

C.  Corrosion Measurement 
A pipe failure and leakage of crude oil in Winchester, 

Kentucky on January 2000, was one of the biggest accidents 
that occurred and it incurred the owner Marathon Ashland 
Pipe Line LLC a clean up cost of $7.1 million. The crack was 
due to a small dent in the pipe that might have been caused by 
stone particles flowing along the path, in addition to the 
fluctuating pressure of the pipe wall [14]. An example of such 
a failure is shown in Fig. 4. 

 
 
 
 
 
 
 

Fig. 4: The rapture pipe due to fatigue cracking [14]. 

 
Wall thinning, a common occurrence in the oil piping 

industry, is characterized by metal loss caused by surface 
erosion due to high temperature, high pressure and high 
flowing velocity of the flowing commodity [15]. The pipes are 
also subjected to combined loading by internal pressure, 
bending moment, and longitudinal forces. The internal wall 
thinning of a pipe cannot be observed from the outside of the 
pipe, hence a method of condition monitoring using ultrasonic 
waves as a non-destructive test of the metal loss can help to 
determine when the pipe may be at risk for leaks or failure. 
Ultrasonic sensor enables detection without any contact with 
the object regardless of its material, nature, color and degree 
of transparency.  

The detection technology used here lies within the 
concepts of nonlinear acoustics. This basically states that 
when sound waves travels through a material, frequency and 
attenuation changes occur to the sound waves. The changes in 
the frequency and amplitude must be detected and analyzed to 
give precise information on the state of the material. 
Ultrasonic transmitters can be used to send ultrasonic waves 
and ultrasonic receivers can be used to detect the propagating 



waves. These sensors are very accurate as they can produce 
and detects high frequency sound wave based on 
Piezoelectricity [16]. Piezoelectric transducers have solid-state 
pressure sensitive elements that will expand and contract in 
step with input signals. 
Demma [17] examined the effect of defect size with frequency 
on the reflection from notches and was able to show the 
relation between the value of reflection coefficient and the 
defect sizing. The cylindrical ultrasonic waves propagate 
along the pipe and are partially reflected when met with 
defects thus providing a fast screening technique to determine 
the presence of defects. Similar results and observation are 
recorded by Lin [18] by using guided waves and 
electromagnetic acoustic transducers (EMATs) to measure the 
wall thickness precisely. Wave propagation is performed for a 
specimen with thickness of 10mm, where different artificial 
defects are introduced to model local wall thinning. As shown 
in Fig.5, when transmitted waves impinge the wall thinning, 
they are reflected and the intensity of the reflected waves 
varies. 

Fig. 5: The energy carried by the transmitted waves passes through the 
wall thinning and some reflected back as echoes. [18] 

 
It is therefore a well known phenomenon, both 

theoretically and experimentally that defects in pipes can be 
detected by ultrasonic transducers [15].    

III METHODOLOGY 
This section details the experimental setup that will be 

used to simulate pipeline conditions and also defect 
conditions. The aim is to create a scaled downed version of an 
actual section of pipeline in the laboratory using commonly 
available materials. Fig. 6 shows the experimental setup. A 
motor pump is used to pump hydraulic oil in the reservoir 
through the pipeline section. A flow rate of around 5 m3/h was 
achieved through a 1 m section of pipe (outer diameter of 
48.30 mm and inner diameter of 42 mm). Two experiments 
will be carried out. The first experiment is to compare a 
defective pipe and a normal pipe.  

 
 

 
 

Fig. 6: Pipeline Experimental Setup. 

 
A lathe is used to clear an area of 1mm wide and 1mm 

deep all around the circumference at the inner surface of the 
pipe. This is to simulate a crack or corrosion at the inner 
surface of the pipe. An ultrasonic transmitter is used to 
transmit a signal across the flowing pipe and through the 
defect area to see changes in the ultrasound signal. Ultrasonic 
receivers, placed at the other end of the pipe, will be able to 
pick-up the waveform that is vibrating in the pipe and can be 
used to monitor the condition of the pipe. The changes in the 
ultrasound signal will be used to determine the presence of 
any defects. The experiment was repeated on a pipe without 
any defects. 

Ultrasonic sensors used are Murata analogue ultrasonic 
sensors which is an open structure type of sensor that has a 
range of up to 6 m and they will be attached to the outer 
surface of the pipe using epoxy. MA40B8S have the nominal 
frequency of 40 kHz with the maximum input voltage of 40V 
peak to peak. The stationary sensors can avoid any disturbance 
from the environment and will be able to transmit ultrasound 
along the length of the pipe by ringing the surface of 
galvanized steel pipe.  

The second experiment is to simulate progressive defects 
or corrosion as seen in real pipelines. Therefore, a simulation 
was carried out to corrode the interior of the test pipe. In order 
to perform this, the test pipe is removed from the setup.  
Stones and rocks of different sizes are passed through the pipe 
for 5 hours a day to speed up the corrosion process. This is 
done by recycling stones and rocks by using a conveyor belt 
and clamping the pipe vertically. This process is repeated 
daily in order to cause random metal loss in the interior of the 
pipe.  

 
IV RESULTS 

The results of from the experimental rig will ultimately be 
used to ascertain whether SVM can detect the presence of 
cracks and whether DWT helps in the decision making. DWT 
is performed on raw time domain samples and the coefficients 
of the resulting DWT are inputted into the SVM for 
classification. Various wavelets can be tested including the 
Haar and Daubechies wavelets. A popular SVM algorithm 
called LIBSVM [19] is used to perform the SVM calculation. 
LIBSVM includes for kernel functions: linear, polynomial, 
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radial basis function (RBF), and sigmoid. To train an SVM, 
the user must select the proper C value as well as any required 
kernel parameters.  

Time domain samples before and after the defect area are 
first broken down into frames where the number of samples 
within the frame is a variable. Each frame will represent one 
instance or sample needed for the SVM and the frame size is 
the number of attributes or dimensions.  Table 1 show the 
results of the first experiment where the SVM accuracy is 
shown as a percentage. The signals are decomposed into two 
frame sizes, 25 and 50 and inputted into the LIBSVM 
algorithm.  10,000 data points from the defective pipe and 
10,000 data points from the normal pipe are used to obtain the 
results. This is therefore is a binary classification problem 
where the two classes are defective and non-defective.  

 

Table 1: Classification accuracy (%) for pipeline data using LIBSVM for 
various kernel functions.  

Frame Size 
Wavelet Kernel 

Func.     25    50 

Poly 73.68 67.74 

RBF 75.44 70.97 - 

Sig 73.68 67.74 

Poly 83.87 61.11 

RBF 80.64 72.22 DB2 

Sig 80.64 61.11 

Poly 89.65 75.00 

RBF 89.65 75.00 Haar 

Sig 86.21 75.00 

 

As can be seen from Table 1, the smaller frame size 
provides better classification accuracy than the bigger frame 
size. The radial basis function (RBF) kernel shows the highest 
classification rates among the kernel functions tested. The 
Haar wavelet also shows better classification accuracy as 
compared to the DB2 wavelet. Fig. 7 shows the results of the 
second experiment where the defects are progressively 
increased over time.  The results shown are taken at weekly 
intervals with results for 5 weeks shown.  

 

 

 
 
 
 
 

 
 

Figure 7: SVM lassification accuracy as defect size increased over time. 

 

As can be seen from the data from Fig 7, as the defects are 
increased over time, the SVM classification accuracy 
decreases. This trend can be used to predict the occurrence of 
defects.  

CONCLUSION 
Monitoring hundreds of kilometers of pipelines is a 

difficult task due to the high number of unpredictable 
variables involved. Rapidly changing weather conditions, 
pressure changes and erosion due to gas or oil flow and 
ground movement are a few variables that can have direct 
impact on the pipelines. There variables can cause defects like 
corrosion, dents and cracks which will lead to loss of the 
valuable commodity and not to mention the series affects on 
the surrounding environment. 

The use of an array of sensors with help of support vector 
machine processing intends to solve these problems in two 
ways. Firstly the array of sensors provides a continuous 
monitoring platform along the entire distance of the pipeline. 
Secondly the use of artificial intelligence tools like support 
vector machines, makes it possible to monitor and ultimately 
predict the occurrence of defects. Support vector machines are 
ideal for applications like these where there are high number 
of dimensions of data (sensors) and also the small number of 
samples for defect scenarios. SVM have been used widely in 
many such applications and has provided excellent 
generalization performance.  

An experimental miniature pipeline rig provided the 
setting to examine the initial performance of the SVM on 
pipeline-like data. For now, no correlation study is made 
between the simulated and real situation.  Ultrasonic sensors 
were used and the corrosion defect was simulated using 
human manipulation. The results of the first experiment 
showed good performance by the SVM using an RBF kernel 
function. Results with other kernels indicate that these other 
kernels do not accurately represent the inner product of feature 
vectors of that data set. The use of DWT further improved the 
performance of the SVM accuracy to 89.65%. This is due to 
the DWT compressing the data and filtering away unwanted 
noise from the high frequency acoustic signals. The second 
experiment show that as the defects are increased, the SVM 



classification accuracy decreases. The reason for this is that 
the signal attenuation and phase are changing as the defects 
are increased. So the ultrasonic signals are looking more and 
more dissimilar to that of the pipe at the beginning causing the 
SVM algorithm to classify more points to the defective class.  

The conclusion is reached that a combination DWT and 
SVM algorithm can predict, to a high accuracy the presence of 
defects and also progressive defects in small pipes. The results 
of this paper will be used in future research where multiple 
sensors resulting in multiple time series signals need to be 
analyzed on bigger diameter pipes. Multiple defect scenarios 
will also be studied resulting in multiclass classification 
problems. The ultimate aim of the research will be to predict 
defects before they occurs thereby conserving the precious 
commodity and environment. 
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