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Abstract—In this paper, the problem of system identification
using chaotic symbolic sequence is presented. We will consider the
parameter estimation of linear moving average systems driven by
chaotic sequences and formulate it as a semiblind identification
scheme. The only knowledge that needs to be assumed at the
estimator is about the dynamics of underlying chaotic system that
generates the input sequence. To implement this estimator, we
utilize expectation maximization (EM) algorithm. The sufficient
statistics in the E-step is obtained with an unscented Kalman
smoother (UKS). This intermediate step in system identification
has similarity with chaos synchronization and hence we extend
this idea to the synchronization of two chaotic systems under
multipath. The estimation and synchronization performance of
the proposed algorithm is evaluated using computer simulations.

I. INTRODUCTION

Chaotic sequences have found many applications in se-
cure communications, cryptography and digital watermarking
due its wide–band nature. Synchronization of chaotic sys-
tems/maps is the backbone of many of these methods. The
objective of any chaotic synchronization scheme is to get the
trajectories of two systems with arbitrary initial conditions
close to each other. Following the drive−response system
suggested by Pecora and Carrol [1], various schemes have been
proposed for the synchronization of chaotic systems [2]–[6].
One of the key issues in chaos synchronization is the presence
of channel noise. Although many od these schemes can
result in an acceptable level of synchronization, intermittent
bursts of desynchronization is observed when channel noise is
present [7]. A detailed account of the effect of the noise on
synchronization is presented in [8]–[10]. One of the solutions
suggested to synchronize chaotic systems when there is noise
is the Kalman filter and its variants. Extended Kalman filter
(EKF) has been shown to be successful in synchronizing
chaotic systems/maps in stochastic environments. This ability
of the EKF initiated a significant research interest [11], [12].
The EKF based scheme can be considered as a scheme which
is capable of estimating the coupling strengths adaptively.
Similarly, other variants of Kalman filters are also studied for
chaotic synchronization hoping to improve the approximation
errors introduced by EKF [13], [14].

Perturbation signal design for linear system identification is
one of the key task [15]. For the persistent excitation, the input
signal should have an impulse like auto correlation function.

Filtered Gaussian noise is widely used as input sequence for
system identification [16]. Random binary sequence, espe-
cially pseudo-random binary sequence (PRBS) are used as the
input signal for system identification since it has desirable crest
factor1. Chaos has been found to be an effective way to drive
linear system for identification [17]–[19]. Chaotic time series
is characterized by its noise like appearance and wide-band
spectrum. Unlike white Gaussian noise, chaotic sequences are
deterministic. It has been shown that the chaotic dynamics can
act as a source of information and thus these sequences can
be used as an alternative to the pseudo random noise signal.
Chaotic sequences can be used either as an un–quantized
sequence (i.e. the chaotic numeric sequences) or as chaotic
symbolic sequences (Symbolic dynamics (SD) is the coarse-
grain description of the chaotic dynamics and has been used
for the analysis of chaotic systems/maps [20]). In any case,
the potential of chaotic sequence for system identification still
remain unexplored by the industry to a large extent. We believe
it is due to the sensitive dependence of chaotic systems on
its initial conditions and the difficulty in synchronizing noisy
chaotic signals.

The method proposed in this paper attacks the problem of
system identification and synchronization in a single frame-
work. We formulate a semiblind system identification method
which can be used for the synchronization of two chaotic
systems. In system identification literature, semiblind estima-
tion is used to emphasis that the estimator has only partial
knowledge about the input signal. For example, in this case,
only the dynamics of the chaotic that generates the input
sequence is available at the estimator. We formulate the sys-
tem identification problem as maximum likelihood estimation
(MLE). Expectation maximization (EM) [21] is used for the
recursive implementation of the MLE. Since the dynamics
that generate perturbation signal is highly nonlinear, we use
unscented Kalman smoother (UKS) for obtaining sufficient
statistics in the expectation step (E-Step). This situation is
very similar to the chaotic synchronization methods, where
a estimate of the trajectory that generated the observation
is estimated from the received signals. Thus, the problem is
formulated as a joint estimation and synchronization problem,
where we will estimate the channel coefficient and recover the

1Crest factor is the ratio of the peak value of a signal to its root mean
square value. A lower crest factor represent more effective energy transfer to
the system which results in enhanced signal to noise ratio.
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transmitted chaotic trajectories recursively.
The current work is a continuation of the EM-EKS (ex-

tended Kalman smoother) based system identification pre-
sented in Ref. [22]. Though the proposed estimator is not
restricted to any particular class of linear systems, we adopt
a generic FIR system for simulation and performance com-
parison. For the second case, we run numerical simulations
to study the estimation and synchronization performance. We
have found that the performance of the proposed scheme is
noticeable even at low SNR values. The rest of this paper is
organized as follows. In section II, the problem of semi-blind
identification is formulated for linear systems. We provide the
numerical simulation results in section III. Finally, conclusions
are drawn in section IV.

II. PROBLEM FORMULATION

A. Parameter Estimation and Synchronization

We will consider a situation where a linear system excited
by a chaotic sequence zn and it could be a chaotic numerical
sequence cn or a chaotic symbolic sequence sn. We observe
the output of the system which is corrupted by noise. i.e.

yn = hT zn + wn. (1)

where zn = [zn, . . . , zn−p+1] is the input to the system with
h = [h1, . . . , hp] and wn is zero mean additive white Gaussian
noise with variance σ2

w. The sequence cn, n = 1, . . . , N with
N as the total length of the input sequence is obtained by

cn+1 = f(cn, η) (2)

where f(cn, η) is a chaotic function parameterized on η. The
symbolic sequence sn is generated by

sn = g(cn) =
{

+1 if cn ≥ η
−1 otherwise (3)

We need to estimate h by using only the observations
and knowledge about the chaotic generator. Since we assume
that the dynamics of the sequence generator is available, this
method falls under semiblind identification. In our formula-
tion, if the initial condition of the chaotic generator, c0, is
known the entire symbolic sequence can be reconstructed. This
step has similarities with chaotic synchronization where the
trajectories of one system are forced to follow the other. i.e
the mean square of the error

en = cn − ĉn, (4)

should be minimal(ĉn is the estimated chaotic sequence).
The estimation problem becomes estimating h and σ2

w in
addition to the initial condition. Let θ = {c0, σ

2
w,h} are the

set of parameters we need to estimate. This procedure can be
treated as a batch approach for joint parameter estimation and
synchronization.

B. The Proposed EM-UKS Estimator

In this section we formulate EM-UKS algorithm for system
identification. EM is a standard tool for iterative maximum
likelihood estimation [23]. It is a two stage algorithm which
involves an expectation step (E–Step) and a maximization
step (M-Step) in each iteration. After randomly initializing
the unknown parameters, the algorithm performs E–Step using
the current parameter estimates and M–Step by maximizing
the expectation. In the next subsection, these two steps are
explained.

1) E-Step: In the EM algorithm, missing variables are in-
troduced as a part of the estimation process. In certain situation
this variable is introduces as an artifact to make the problem
tractable. In many other situations, this missing variable will
be a part of the estimation problem [23]. In our problem, the
state variables of the chaotic system are unobserved and it
will naturally become the missing variable. We formulate an
augmented state space model for our application. The three
unknowns (θ) we try to estimate here is h, σ2

w and c0. We
form the state vector zn = [zn, zn−1, . . . , zn−(p−1)] which is
the missing variable and has the dynamics

zn+1 =
[

f(zn)
0

]
+

[
0 0

Ip−1 0

]
zn (5)

where Ip−1 is an identity matrix of order p − 1. In the E–
Step we construct the complete statistics, P(Z,y) ,with hidden
variable Z = [z1, . . . , zN ] which is an estimate of cn and
observances y = [y1, . . . , yN ]. Then the probability density
function is given by

P (Z,y) = P(z1)
N∏

n=2

P (yn|zn) , (6)

since due to the deterministic nature, P (zn+1|zn) = 1. We
have

P(z1) = N (0, σ2
cI)

P (yn|zn) = N (hT zn, σ2
w) (7)

Once this is obtained, the next step is to get the expectation
Q as

Q = E [L(Z,y))|y,θ]

= −1
2

ln(2πσ2
c )− N

2
ln(2πσ2

w)− 1
2σ2

c

E
[
x2

1|y, θ
]

−
N∑

n=1

y2
n − 2

N∑
n=1

ynhTE [zn|y, θ]

+
N∑

n=1

hTE
[
znzT

n |y, θ
]
h. (8)

In order to compute the above expectation, we need to find
the individual expectations

xs
n = E[zn|y, θ]

Ps
n = E[znzT

n |y, θ] (9)

A smoother can give these individual expectation values. Since
the sequence generated from a nonlinear system, Unscented
Kalman Smother (UKS) is used for its advantage over the
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traditional EKS [24]. We use UKS based on the Rauch–Tung–
Striebel smoothing [25].

2) M-Step: In the M-Step, we use the result from the
previous steps to do the maximization using the following
steps.

ĥ =

[
N∑

n=1

Ps
n

]−1 N∑
n=1

ynxs
n

σ̂2
w =

1
N

N∑
n=1

(yn − ĥT xs
n)

σ̂c = cs
0 (10)

These results are used in the next E–Step. This process is
repeated until the iterations converge. The schematic of the
proposed method is shown in figure 1.

cn+1 = f (cn)

sn = g(cn)

s1, . . . , sN

yn = h
T
sn + wn EM-UKS

y1, . . . , yN ĥ

Fig. 1. Parameter estimation of a linear system using EM-UKS.

One of the motivations for this work is the interplay between
the E–step and M–step. In the E–step, it is assumed that the
estimated parameters are true and is used to obtain a smooth
estimate of the state of the chaotic map from the observations.
This is essentially similar to synchronization method where,
system trajectories are estimated from observations. Once
the smoothed states are obtained, this will be used for the
parameter estimation. Thus, the overall procedure results in
synchronized trajectories once the algorithm is converged.

III. RESULTS AND DISCUSSION

In this section, we will discuss the result of the numerical
simulations. The chaotic map we used for all the simulation
is given by

cn+1 =
γcn(1− c2

n)
1 + ρc2

n

(11)

where γ = 5 and ρ = 2. The chaotic attractor of the map is
shown in Fig. 2. We set the threshold value η = 0. We analyze
the parameter estimation as well as synchronization qualities
of the proposed method.

A. Performance of the Proposed System on Parameter Esti-
mation

For the analysis, we define the estimation error in the linear
channel h, MSEh as

MSEh =
1
N

N∑

i=1

||h− ĥ||
P

(12)

where N is the number of iteration carried out in each SNR
values2. We compare this with both filtered Gaussian noise
and PRBS based non–blind identification systems.

2Here, the SNR is defined as the power of the signal after threshold
operation divided the power of the noise. This is identical to the typical
formulation communication systems.
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Fig. 2. Original Attractor.

We consider the system identification problem in a general
settings with FIR coefficients h = [1, 0.6, 0.3]. We run nu-
merical simulations to study the effectiveness of the proposed
scheme. MSEh is calculated according to Eq. (12) with N =
16. The result is plotted in figure 3. For comparison purpose,
we have also plotted the non–blind identification schemes
based on the white Gaussian noise and PRBS. Clearly, chaotic
symbolic sequence based estimation scheme closely follows
the training sequence based non–blind identification scheme at
all SNR values. Compared to the chaotic numeric sequence,
it is clearly an advantage. We will see the reason for this
in the next subsection when we study the synchronization
performance.
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Fig. 3. SNR vs MSEh.

As we know from general statical signal processing, it is
desirable to have a large number of observations to improve
the accuracy of the estimate. Next, we will study the effect
of the number of sample N on the MSE performance. Figure
4 shows relationship between the length of the observations
and MSEh. We change the value of N from 16 to 512 by
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keeping channel noise at 20dB. For both chaotic symbolic
and numerical sequences, the dependence of MSE on N
is obvious. The chaotic symbolic sequence outperforms the
numerical sequence in all the SNR values. Also, the rate of
decrease in MSE is more prominent in the case of the symbolic
sequence based identification. Since the increase in N increase
the computational complexity, this information can be used for
designing the receiver.
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Fig. 4. Length vs MSEh.

As an iterative algorithm, computational power requirement
for EM algorithm is very high. It is desirable to achieve
convergence with minimum iterations. To study effect of noise
on the convergence of the EM algorithm, we consider two
SNR values and performed a number simulations. The number
of iterations required for convergence is plotted as histogram
in figures 5 and 6. It can be seen that there is a strong
dependency on the convergence of EM-UKS and noise. For
chaotic symbolic sequences, at 20dB most of the iterations
converge within seven or eight iterations while at 10dB EM-
UKS takes at least 8 iterations. We observe few simulations
takes close to 30 iterations to converge. Similar observations
are made on the chaotic numeric sequence; however, com-
pared to chaotic symbolic sequence it takes more number of
iterations to converge. From all these studies, we can see that
chaotic symbolic sequence based system identification scheme
has very attractive performance measures despite the heavy
computational load.

B. Performance of the Proposed System on Chaotic Synchro-
nization

In this section we present the results of the proposed
technique for the synchronization of chaotic sequences. We
will start the analysis with un–quantized chaotic sequence. We
consider a situation where, strong multipath and channel noise
exists. We use the same channel as in the previous section
for these simulations. The state space of the received signal
(when the channel noise is 10dB) is given figure 7 and the
corresponding reconstructed state–space is shown in figure 8.
Clearly, even at 10dB noise, the attractor of the chaotic system
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Fig. 5. Histogram of number of iterations taken for convergence: (a) 20dB
and (b) 10dB.
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Fig. 6. Histogram of number of iterations taken for convergence: (a) 20dB
and (b) 10dB.

is reconstructed very closely to the original one. For the higher
SNR, qualitatively, the reconstructed attractor matches closely
with the original one (figure 9). The original, received and
reconstructed waveforms, when the channel noise is 10dB are
shown in figure 10. We have observed no transient in our
simulations which implies a quick synchronization.

Next, we will study when symbolic sequences are used
for the transmission. From figure 11, we can see that the
estimated and original sequence does not follow one to one.
This is due to the approximation we used in the execration
step. i.e. instead of finding the exact trajectory, its coarse
representation estimated. Figure 12 shows the original and
estimated symbolic sequences. The estimated symbolic se-
quence closely follows the corresponding symbolic sequence
entering the channel. This method can be used with other
symbolic sequence based synchronization schemes [26] in
order to estimate the corresponding numeric sequence.
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Fig. 7. State–space of the received signal when the channel noise is 10dB.
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ĉ
n
−

1

Fig. 8. Recovered state–space when the channel noise is 10dB.
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Fig. 9. Recovered state–space when the channel noise is 20dB.
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Fig. 10. Portion of the original, received, and recovered signals: Chaotic
numeric sequence with channel noise 10dB.
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Fig. 11. Portion of the original, transmitted, and recovered signals: Chaotic
symbolic sequence with channel noise 10dB.
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Fig. 12. Original and estimated symbolic sequence with channel noise 10dB.

IV. CONCLUSION

In this paper, the problem of chaotic synchronization is for-
mulated as joint estimation and synchronization. By combining
EM with UKS we form EM–UKS estimator for system identi-
fication. With this, the E–step acts as synchronization step and
M–step acts as parameter estimation step. We compared the
estimation and synchronization performance using numerical
simulations. We found that the estimation performance of the
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proposed system is close to training based Gaussian white
noise and PRBS in all SNRs when symbolic sequence is used.
Similarly, at low and high SNRs, the proposed scheme was
able to synchronize well.
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