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Abstract—Self-organised synchronisation is a common phe-
nomenon observed in many natural and artificial systems: simple
coupling rules at the level of the individual components of
the system result in an overall coherent behaviour. Owing to
these properties, synchronisation appears particularly interesting
for swarm robotic systems, as it allows to robustly coordinate
through time the activities of the group while keeping a minimal
complexity of the individual controllers. The goal of the exper-
iments presented in this paper is the study of self-organising
synchronisation for robots that present an individual periodic
behaviour. In order to design the robot controllers, we make
use of artificial evolution, which proves capable of synthesising
minimal synchronisation strategies based on the dynamicalcou-
pling between robots and environment. The obtained resultsare
analysed under a dynamical systems perspective, which allows us
to uncover the evolved mechanisms and to predict the scalability
properties of the self-organising synchronisation with respect to
varying group size.

I. I NTRODUCTION

Synchrony is a pervasive phenomenon: examples of syn-
chronous behaviours can be found in the inanimate world
as well as among living organisms [1], [2]. The discovery
of the basic mechanisms behind self-organised synchronisa-
tion aroused research for many years, until the appropriate
analytical methods were developed [3], [4]. Self-organising
synchronisation phenomena can be modelled as systems of
multiple coupled oscillators. Consider for example the syn-
chronous flashing of fireflies [5]. Fireflies can be modelled as
a population of pulse-coupled oscillators with equal or very
similar frequencies. These oscillators can influence each other
by emitting a pulse that shifts or resets their oscillation phase.
The numerous interactions among the individual oscillator-
fireflies are sufficient to explain the synchronisation of the
whole population (for more details, see [5]–[7]).

The synchronisation behaviours observed in Nature can be
a powerful source of inspiration for the design of robotic
systems. Synchronisation is an important mean to achieve
coordination. This holds true particularly for swarm robotic
systems [8], where emphasis is given to the emergence of
coherent group behaviours from simple individual rules. Much
work takes inspiration from the self-organised behaviour of
fireflies or similar synchronisation behaviours observed in
Nature [9]–[13]. The goal of the experiments presented in this
paper is the study of self-organising synchronisation in a group
of robots based on minimal behavioural and communication
strategies. We follow the basic idea that if an individual
displays a periodic behaviour, it can synchronise with other
(nearly) identical individuals by temporarily modifying its

behaviour in order to reduce the phase difference with the
rest of the group. In other robotic studies, synchronisation is
based on the entrainment of the individual internal dynamics
through some form of communication. In this paper, instead,
we do not postulate the need of internal dynamics. Rather, the
period and the phase of the individual behaviour are defined
by the sensory-motor coordination of the robot, that is, by
the dynamical interactions with the environment that result
from the robot embodiment. We show that such dynamical
interactions can be exploited for synchronisation, allowing to
keep a minimal complexity of both the behavioural and the
communication level. In order to define a robot controller
able to exploit such dynamical agent-environment interactions,
we use artificial evolution [14], [15]. The obtained resultsare
analysed under a self-organising perspective, evaluatingtheir
scalability to large groups of robots.

The main contribution of this paper consists in the analysis
of the evolved behaviours, which is brought forth exploiting a
dynamical systems approach [16]. In this paper, we introduce
a dynamical system model of the robots interacting with the
environment and among each other. This model offers us
the possibility to deeply understand the evolved behaviours,
both at the individual and collective level, by uncovering the
mechanisms that artificial evolution synthesised to maximise
the user-defined utility function. Moreover, we show how
the developed model can be used to predict the ability of
the evolved behaviour to efficiently scale with the group
size. We believe that such predictions are of fundamental
importance to quickly select or discard obtained solutions
without performing a time-demanding scalability analysis, as
well as to engineer swarm robotic systems that present the
desired properties.

II. EVOLUTION OF SELF-ORGANISING SYNCHRONISATION

In this section, we present the experimental scenario defined
for the evolution of synchronisation behaviours. The task
requires that each robot in the group displays a simple periodic
behaviour, which should be entrained with the periodic be-
haviour of the other robots present in the arena. The individual
periodic behaviour consists in oscillations along they direc-
tion of the rectangular arena (see Figure 1). Oscillations are
possible through the exploitation of a symmetric gradient in
shades of grey painted on the ground, which can be perceived
by the robots through the infrared sensors placed under their
chassis. The gradient presents a black stripe for|y| > 1, in
which the robots are not supposed to enter. Collisions with
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walls or other robots are avoided using the infrared proximity
sensors placed around the cylindrical body of the robots.
Finally, synchronisation of the movements can be achieved
by exploiting a binary communication system: each robot can
produce a continuous tone with fixed frequency and intensity.
When a tone is emitted, it is perceived by every robot in the
arena, including the signalling one. The tone is perceived in
a binary way, that is, either there is someone signalling in the
arena, or there is no one.

The robots used in this experiments are thes-bots, which are
small autonomous robots with a differential drive system [17].
The evolutionary experiments presented in this paper are
performed in simulation, using a simple kinematic model
of the s-bots, and the results are afterwards validated on
the physical platform. Artificial evolution is used to set the
connection weights and the bias terms of a fully connected,
feed forward neural network—a perceptron network. The evo-
lutionary algorithm is based on a population of 100 genotypes,
which are randomly generated. This population of genotypes
encodes the connection weights of 100 neural controllers. Each
connection weight is represented with a 8-bit binary code
mapped onto a real number ranging in[−10, +10]. Subsequent
generations are produced by a combination of selection with
elitism and mutation. Recombination is not used. At each
generation, the 4 best individuals—i.e., theelite—are retained
in the subsequent generation. The remainder of the population
is generated by mutation of the 20 best individuals. Each
genotype reproduces at most 5 times by applying mutation
with 3% probability of flipping a bit. The evolutionary process
runs for 500 generations.

The evolved genotype is mapped into a control structure
that is cloned and downloaded onto all thes-botstaking part
in the experiment (i.e., we make use of a homogeneous group
of s-bots). The performance of a genotype is evaluated by a
2-component function:F = 0.5 · FM + 0.5 · FS ∈ [0, 1].
The movement componentFM simply rewards robots that
move along they direction within the arena at maximum
speed. The oscillatory behaviour derives from the fact that
the arena is surrounded by walls, so that oscillations during
the whole trial are necessary to maximiseFM. The second
fitness componentFS rewards synchrony among the robots as
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Fig. 1. Snapshot of a simulation showing three robots in the experimental
arena. The dashed lines indicate the reference frame used inthe experiments.

the cross-correlation coefficient between the distance of the
robots from thex axis. In this way, synchronous oscillations
are rewarded also when robots are in perfect anti-phase.
In addition to the fitness computation described above, two
indirect selective pressures are present. First of all, a trial is
stopped when ans-bot moves over the black-painted area,
and we assign to the trial a performanceF = 0. In this
way, robots are rewarded to exploit the information coming
from the ground sensors to perform the individual oscillatory
movements. Secondly, a trial is stopped when ans-botcollides
with the walls or with another robot, and also in this case we
setF = 0. In this way, robots are evolved to efficiently avoid
collisions.

III. E VOLUTIONARY RESULTS

We performed 20 evolutionary replications, each starting
with a different population of randomly generated genotypes.
Each replication produced a successful synchronisation be-
haviour, in which robots display oscillatory movements along
the y direction and synchronise with each other, according to
the requirements of the fitness function. The individual ability
to perform oscillatory movements is based on the perception
of the gradient painted on the arena floor, which gives infor-
mation about the direction parallel to they axis and about the
point where to perform a U-turn and move back towards thex

axis. In order to produce self-sustained oscillations, signalling
is exploited. The main role of the evolved communication
strategy is to provide a coupling between the oscillatings-
bots, in order to achieve synchronisation. In fact, each evolved
controller produces a signalling behaviour that varies while
the robots oscillate. In this way, the signal emitted by a robot
carries information about its position (orphase), which can
be exploited by other robots for synchronisation. In summary,
the evolved synchronisation behaviours are the results of the
dynamical relationship between the robot and the environment,
modulated through the communicative interactions among
robots. No further complexity is required at the level of
the neural controller: simple and reactive behavioural and
communication strategies are sufficient to implement effective
synchronisation mechanisms.

A qualitative analysis of the obtained controllers revealsthat
the behaviours produced are quite similar one to the other.
In general, it is possible to distinguish two phases in the
evolved behaviours: an initial transitory phase during which
robots achieve synchronisation, and a subsequent synchronised
phase. The transitory phase may be characterised by physi-
cal interferences between robots due to collision avoidance,
if robots are initialised close to each other. The collision
avoidance behaviour performed in this condition eventually
leads to a separation of thes-botsin the environment, so that
further interferences to the individual oscillations are limited
and synchronisation can be achieved. During the synchronous
phase, collision avoidance is therefore less probable, but
still possible due to the environmental noise, which may let
robots deviate from their normal movements and approach
other robots. Otherwise, this phase is characterised by stable
synchronous oscillations of alls-bots, and small deviation from
synchrony are immediately compensated.
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IV. DYNAMICAL SYSTEM MODELLING

We want to analyse the behaviour of a group of robots
that synchronise their periodic oscillations. Our main interest
is the understanding of both the individual behaviour and
the synchronisation mechanism. Such understanding may be
useful to predict some features of the evolved behaviour,
e.g., scalability. To do so, we model the behaviour of the
single robot looking only at the relevant features of the agent-
environment dynamics. In particular, we ignore physical inter-
actions among robots and between robots and walls. Moreover,
we neglect the environmental noise and second order dynamics
in the robot motion. As a consequence of such simplifications,
the oscillatory behaviour of the robotr can be modelled as
follows:

〈yr, θr, Sr〉|t+1 = Bc(yr, θr, s)|t. (1)

where yr is the y coordinate of robotr at time t, θr its
orientation,s is the binary communication signal perceived at
time t andSr is the signal emitted by robotr at time t. The
functionBc encodes the fundamental features of the individual
behaviour, as it is produced by the parametersc of the evolved
controller. In other words, given the above simplification and
considering the features of the gradient painted on the arena
floor, it is possible to neglect thex coordinate of a robot, as
it does not influence the individual behaviour. The latter can
be described as a trajectory in the 3D space〈y, θ, s〉, which is
determined byBc. Notice that when only one robot is present,
the perceived sounds corresponds to the self-emitted signal
Sr. With R interacting robots, the communication channel
determines the following coupling rule:

s(t) = max
r

Sr(t) ∈ {0, 1}, (2)

which specifies that a binary signal is perceived if and only
if it exists at least ones-bot r that is signalling. Notice
that the sound perceptions is equal for all robots in the
environment, because communication is global and binary.
What happens withR robots? The only interaction amongs-
botsis a communicative one, given by the coupling introduced
in equation (2). It is therefore possible to define the following
discrete-time dynamical system of3R + 1 equations:



















〈y1, θ1, S1〉|t+1 = Bc(y1, θ1, s)|t
...

〈yR, θR, SR〉|t+1 = Bc(yR, θR, s)|t
s|t+1 = maxr Sr|t+1

. (3)

In the following, we make use of this model to discuss about
the behaviour of a singles-botand the evolved synchronisation
mechanism.

V. BEHAVIOURAL ANALYSIS

The behaviour of the individuals-botcan be studied looking
at how positiony, orientationθ and perceived sounds vary
through time. We analyse the behaviour produced by the best
evolved controller among the 20 evolutionary replications,
namely the controller evolved in the 8th replication, which
will be referred to asc8. To do so, we numerically integrate
equation (3) forR = 1 to compute avector field showing

the instantaneous direction and magnitude of change for each
point in the state space〈y, θ, s〉 (see the top-left plot in
Figure 2). This is a 3-dimensional space wherey and θ are
continuous variables that vary respectively in the range[−1, 1]
and[0, 2π], while s is a binary variable. The plot suggests how
the state of ans-botstarting at any point in its space evolves
through time. Together with the vector field, the continuous
line indicates the limit cycle attractor to which every trajectory
converges. Notice that the continuous line is actually a closed
trajectory, due to the2π-periodic boundary conditions ofθ.
The existence of such a limit cycle attractor indicates that
the individual behaviour is actually periodic, and defines the
dynamics of convergence toward a stable motion of the robot.

Another important information can be extracted from the
vector field: the signalling behaviour. For each point in the
plane〈y, θ〉, it is possible to distinguish 4 different signalling
behaviours:

• no signalling: the robot never emits a signal when placed
at position〈y, θ〉.

• environment-driven signalling: the robot always emits a
continuous signal when placed at position〈y, θ〉, no mat-
ter what signal is perceived. Signalling depends entirely
on the position of thes-bot in the environment.

• signal-driven signalling: the robot emits a continuous
signal when placed at position〈y, θ〉, but only in response
to a perceived signal. Otherwise, no signal production is
observed.

• alternate signalling: the robot emits a signal when
placed at position〈y, θ〉 if no signal is perceived, and
signalling is stopped in response to a perceived signal.
As a consequence, thes-bot continuously switches on
and off its loudspeaker.

We show the signalling behaviour of the best evolved con-
troller in the top-right plot of Figure 2. Different signalling
behaviours are indicated by circles filled with varying grey-
level. It is possible to notice that the limit cycle traverses
areas of the state space characterised by varying signalling
behaviour. A signal is produced when thes-bot enters the
“environment-driven” area, and it is stopped when thes-bot
exits from the “signal-driven” area. Notice that entering in the
signal-driven area havings = 0 does not lead to the production
of a signal, while entering withs = 1 maintains the previous
signalling status.

In order to describe the individual behaviour, notice that the
limit cycle attractor jumps between the planes characterised by
s = 0 ands = 1. In other words, the system switches between
two different dynamics. The vector fields for these two con-
ditions determine the quality of the individual oscillations, as
shown in the bottom plots of Figure 2. Whens = 0, the robot
follows the left vector field, moving straight until it enters
in the environment-driven signalling area. At this point, the
production of a signal corresponds to a switch to the dynamics
described by the right vector field, which presents a limit cycle
attractor displayed by a dotted line. It is possible to notice how
the normal limit cycle approaches this attractor whens = 1
(see the grey segments of the limit cycle in Figure 3). However,
before converging onto this attractor, the limit cycle enters the
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Fig. 2. Individual behaviour produced by controllerc8. Top-Left: 3D vector field showing for each point in the statespace the direction of variation and
its magnitude. Theθ dimensions is characterised by2π-periodic boundary conditions. The continuous line represents the limit cycle attractor. Top-Right:
signalling behaviour of the controller for each position and orientation (see text for details). The continuous line represents a projection of the limit cycle on
the y θ plane: a black line colour indicates that the trajectory belongs to the planes = 0, while the grey colour corresponds to the portion of trajectory that
belongs to the planes = 1. Bottom-Left/Right: projection on they θ plane of the vector fields for a perceived signals = 0 and s = 1. The dotted line in
the bottom-right vector field represents the limit cycle fora constant perceived signal forced to1, despite the individual behaviour.

“no signalling” area, and therefore thes-botswitches back to
movements dictated by the vector field fors = 0.

Once decoded the individual behaviour, we analyse the
system (3) withR = 2 robots. In this case, the dimensionality
of the system does not allow an easy visualisation of the
trajectories. However, we observed that thes-bots’ movements
are governed solely by the individual behaviourBc and by

the coupling rule (2), which states that a signal is perceived
whenever somes-bot emits a signal. As a consequence, it
is possible to describe the behaviour of synchronisings-
bots by looking at how the individual movements change
with respect to incoming signals. Figure 3 presents various
plots that represent different phases of the synchronisation. In
the upper part, the positiony for the two robots is plotted
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with respect to time. It is possible to observe that after an
initial transitory phase, the robots converge towards coordi-
nated movements. In particular, the positiony is “modulated”
through communicative interactions: the robot that signals first
influences the behaviour of the other robot, which anticipates
the turnabout in response to the perceived signal (see the gray
bands in the background that indicate a continuous perceived
signal). A better idea on how synchronisation is achieved is
given by plotting the trajectories of the two robots over the
vector fields fors = 0 ands = 1 (see the central and bottom
plots of Figure 3). The twos-botsstart in the points indicated
by ‘O’, and none of them is signalling. As a consequence,
the s-bots follow the top-left vector field, until they reach
the point indicated by an ‘A’. Here, one of the robot enters
the environment-driven signalling area, and therefore emits a
signal, that triggers a behavioural change in both robots. The
robots now follow the top-right vector field and both perform
a clockwise turn, as indicated by the arrows. However, this
turn is not performed at the same speed by the two robots:
the one at largery moves faster than the other, as indicated
by the size of the arrows of the vector field. Consequently,
the difference in distance among the two robots is consistently
reduced in this phase, which ends with the robots reaching the
points indicated with ‘B’. In the interval from points ‘B’ to
points ‘C’ no robot is signalling and no interaction is present.
The same interaction characterises the phases between points
‘C’ and ‘D’ and between ‘E’ and ‘F’, until synchronisation is
achieved. This synchronisation mechanism is therefore based
on the modulation of the positiony during the oscillation: the
first robot that reaches the environment-driven signallingarea
triggers a U-turn in the other robot, which is however per-
formed at a lower speed, allowing the trajectories to approach
and eventually converge into synchronous oscillations.

VI. SCALABILITY ANALYSIS

The analysis of the synchronisation behaviour for twos-
bots is accompanied by a scalability analysis in which we test
all evolved behaviours with groups of 3, 6, 12, 24, 48 and 96
s-bots. We first test the evolved behaviour in simulation, and
we found that physical interactions may prevent the system
from scaling to very large number of robots (data not shown).
In fact, physical interactions occur with a higher probability
per time step as the group size increases. Every collision
avoidance provokes a temporary de-synchronisation of at least
two robots, which have to adjust their movements in order
to re-gain synchronous oscillations with other robots. As a
consequence, the performance of the group as a whole is
negatively affected. Still, the evolved synchronisation mech-
anism may scale well if there are no physical interactions.
To prove so, we performed a further scalability analysis by
ignoring collisions among robots (see Figure 4). We found
that many controllers present perfect scalability, with only a
slight decrease in performance due to the longer time required
by larger groups to perfectly synchronise. However, other
controllers present poor performance for large groups. By
observing the actual behaviour produced by these controllers,
we realised that the absence of scalability is caused by a

communicative interference problem: the signals emitted by
differents-botsoverlap in time and are perceived as a constant
signal (recall that the sound signals are global and that they
are perceived in a binary way, preventing ans-bot from
recognising different signal sources). If the perceived signal
does not vary in time, it does not bring enough information to
be exploited for synchronisation. This problem is the result of
the fact that we used a “global” communication form in which
the signal emitted by ans-bot is perceived by any others-bot
everywhere in the arena. Moreover, from the perception point
of view, there is no difference between a singles-bot and a
thousand signalling at the same time. The lack of locality and
of additivity is the main cause of failure for the scalability
of the evolved synchronisation mechanisms. However, as we
have seen, this problem affects only some of the analysed
controllers. In the remaining ones, the evolved communication
strategies present an optimal scalability that is only weakly
influenced by the group size.

Is it possible to predict whether a given evolved behaviour
will scale or not with increasing group size? We try to give
an answer by exploiting the mathematical model introduced
in Section IV. We start from the observation that, if a
synchronisation mechanism does not scale with the group
sizeR, there exist an alternative attractor to the synchronous
one, in which robots move incoherently. In other words, the
dynamical system (3) undergoes a bifurcation with varying
parameterR, so that two attractors are observable for large
R: the coherent, synchronous one, and the incoherent one. In
order to predict from the individual behaviour whether such
a bifurcation exists, it is necessary to understand which are
the conditions for the existence of an incoherent attractor.
Recall that, whenever an evolved synchronisation mechanism
does not scale, the perceived signal does not vary in time. In
such a situation, in fact, thes-botsdo not receive information
about the position and orientation of other robots. If ans-bot
r perceives a constant signal, its behaviour can be predicted
as follows:

〈yr, θr, Sr〉|t+1 = Bc(yr, θr, f(s))|t, (4)

where f(s)|t indicates the constant perceived signal. It is
therefore possible to plot the vector field for the above
behaviour, and analyse possible attractors—be they fixed
points or limit cycles—towards which all trajectories of the
s-bot converge. We claim that, if such attractors exist and
if they entirely lay out of the portion of state space in
which Sr(yr, θr, f(s))|t+1 = f(s)|t+1—which we refer to
as thenon-interaction area—then the evolved synchronisation
mechanism is scalable, no matter the group sizeR.

To prove the above claim, simply observe that the incoherent
attractor exists contextually to a perceived signal that does not
vary in time. Given that thes-botsthemselves are responsible
for signal production, the existence of the incoherent attractor
requires that alls-botsparticipate in the signal production, so
that:

∀t ∃r ∈ {1, . . . , R} : Sr(yr, θr, f(s))|t+1 = f(s)|t+1. (5)

However, this requires that the attractor for the system (4)
is contained at least partially within thenon-interaction area,
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which contradicts our hypothesis.

The controllerc8 analysed in Section V produces a scalable
behaviour, as shown in Figure 4. In fact, it presents a limit
cycle attractor shown as a dotted line in the bottom-right
vector field of Figure 2, which is completely contained within
the no-signalling area. On the contrary, controllerc13 does
not present scalability (see Figure 4). The evolved behaviour
can be appreciated and analysed with the 3D vector field of
Figure 5 that shows the individual behaviour under normal
conditions. The right vector field in Figure 5 corresponds to
the behaviour of thes-bot when a continuous signals = 1
is constantly perceived. It is possible to notice that the limit
cycle attractor for this condition traverses the environment-
driven signalling area. As a consequence, with a sufficiently
large number ofs-botsthe evolved synchronisation mechanism
does not scale, as can be appreciated in Figure 4.

A further prediction from the mathematical model consists
in the minimum group sizeRm for which the incoherent
attractor exists (i.e., the bifurcation point). This groupsize
depends on the time each robot spends in thenon-interaction
area while moving over the limit cycle. In fact, in order to
satisfy condition (5), it is necessary that while a robot moves
within thenon-interaction area, another robot prepares to enter
in it. In other words,Rm robots should be evenly spaced
over the limit cycle so that, when ones-bot exits thenon-
interaction area, another one enters in it, therefore sustaining
the production of the constant signal. As a consequence, the
minimum group sizeRm is given by:

Rm =

⌈

T

Tn

⌉

, (6)

where T is the period of a single oscillations, andTn is
the fraction of this period spent within thenon-interaction
area. For controllerc13, we experimentally obtainedRm = 6,
which is to be considered a theoretical lower bound for the
minimum group size. We actually observed the appearance of
the incoherent attractor for a minimum group size of9 (data
not shown).

VII. C ONCLUSION

Much as natural evolution produced swarms of fireflies able
to self-organise to achieve coherent group behaviour, artificial
evolution can synthesise self-organising swarms of robotsthat
accomplish complex tasks. In this respect, swarm intelligence
can benefit from the study and analysis of natural as well
as artificial systems: in both cases, a deep understanding of
the dynamics that govern the individual behaviour and the
social interactions can underpin novel developments in theen-
gineering of swarm intelligent systems. In this paper, we have
presented an artificial evolutionary process that has shaped
the behaviour of a robotic system to display self-organised
synchronisation. We have also shown how the dynamical
system analysis can explain the evolved mechanisms and
predict the behaviour of the robotic system for varying group
size. We believe that this analysis can bring useful insights on
how to build—through automatic techniques or hand-design—
swarm robotics systems that are capable of self-organised
synchronisation and that scale to large number of robots. In
fact, we have given a clear description of the building blocks
necessary to produce synchronised behaviours, and, most
importantly, we have decoded the individual behaviour to find
the conditions that allow the system as a whole to synchronise,
no matter the group size. In conclusion, we believe that studies
about synchronisation such as the one presented in this paper,
notwithstanding the explicitly simplified experimental setup,
can have a strong impact on future studies in swarm robotics.
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[8] M. Dorigo and E. Şahin, “Swarm robotics — special issue editorial,”
Autonomous Robots, vol. 17, no. 2–3, pp. 111–113, 2004.

[9] O. Holland and C. Melhuish, “An interactive method for controlling
group size in multiple mobilerobot systems,” inProceedings of the 8th
International Conference on Advanced Robotics (ICAR ’97). IEEE
Press, Piscataway, NJ, 1997, pp. 201–206.

[10] C. Melhuish, O. Holland, and S. Hoddell, “Convoying: using chorusing
to form travelling groups of minimal agents,”Robotics and Autonomous
Systems, vol. 28, pp. 207–216, 1999.

[11] S. Wischmann, M. Huelse, J. F. Knabe, and F. Pasemann, “Synchro-
nization of internal neural rhythms in multi-robotic systems,” Adaptive
Behavior, vol. 14, no. 2, pp. 117–127, 2006.
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