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Abstract— We consider a collection {Ok}
N

k=1 of interacting
parametric mixed canonical-dissipative systems, (MCD). Each in-
dividual Ok, exhibits, in absence of interaction, a limit cycleLk

on which the orbit circulation is parameterized by ωk(t). The
underlying network defining the interactions between theOk ’s
is assumed to possess a diffusive Laplacian matrix. For each
Ok, we construct a class of position- and velocity-dependent
interactions which lead to a dynamic learning process of the
Hebbian type (DHL). More precisely, the interactions affect the
circulation parameterization ωk(t) and the DHL mechanisms
manifests itself by asymptotically driving the system towards
a consensual (oscillatory) global state in which allOk share a
common circulation parameterization ωc. It is remarkable that
for our class of interactions, we are able to analytically calculate
ωc which, in our case, is independent of the topology of the
connecting network. However, the coupling network topology
explicitly controls the relaxation rate via the spectral gap of the
underlying adjacency matrix (i.e. the so calledFiedler number
of the associated graph). Finally, we report several numerical
illustrations which enable to observe the DHL mechanisms at
work and confirm our theoretical assertions.

Keywords— mixed canonic-dissipative systems, limit cycles
oscillators, dynamic Hebbian learning, consensual states, diffusive
coupling, Laplacian matrix, algebraic connectivity.

I. I NTRODUCTION

In a recent paper [1], L. Righetti et al. show how to
implement what they call a Dynamic Hebbian Learning (DHL)
process by coupling nonlinear parametric oscillators withan
external time-dependent signal. As a paradigmatic illustration,
they consider an non-autonomous parametric Hopf oscillator
(HO), defined, in its phase space, by the system of equations:

HO







ẋ = +ωy +
(
1 − x2 − y2

)
x + ǫ sin(Ωt),

ẏ = −ωx +
(
1 − x2 − y2

)
y,

ω̇ = ǫ sin(θ(t)) sin(Ωt),
(1)

whereǫ is a small positive constant,sin(Ωt) externally per-
turbs the basic dynamics of the HO (Ω is a positive constant)
and whereθ(t) := arctan( y(t)

x(t) ). The DHL process manifests
itself by the fact that the circulation parameterization (i.e.
here the basic frequency of the underlying HO)ω(t) does,
asymptotically converge, toΩ, the frequency of the external
input signal. In other words, the external signal ”plastically”
deforms the original limit cycle dynamics. We speak about

plasticity to reflect the fact that, once this deformation is
realized, it definitely subsists even if the external input is
removed. This generic behavior can be qualitatively under-
stood by the fact that the external perturbing signal gradually
affects the circulation parameterizationω on the limit cycle
L, (for Eqs.(1),L :=

{
(x, y) ∈ R2|x2 + y2 = 1

}
), but leaves

the shape ofL essentially invariant.
The core of the present paper is to substitute in Eqs.(1) the

role played by the external signal by the dynamics delivered
by other limit cycle oscillators and then, to study the resulting
mutual DHL process. More generally, we will consider a col-
lection {Ok}

N
k=1 of independentmixed canonical-dissipative

systems (MCD) as introduced in [2] and [3], which exhibit
limit cyclesLk and different individualωk(t), k = 1, 2, . . . , N

on Lk. The action of dissipative mechanism is to stabilize the
orbits onLk and the canonic part of the vector field (i.e. its
Hamiltonian part) is responsible for the circulation on thelimit
cycles. In our class of models, the mutual interactions between
theOk ’s are characterized by:

a) a network N of diffusively coupled Ok ’s - i.e. the row
elements of the associated Laplacian coupling matrix of
the network add to zero.
b) a dynamic Hebbian learning mechanism (DHL). We
allow the ωk(t) to behave as additional variables and
we implement couplings between these variables with
the whole dynamics. Qualitatively speaking, the DHL
coupling rule essentially affects the circulation parame-
terization on the limit cyclesLk while keeping the shape
of Lk approximately unchanged.

The DHL process and the resulting “plasticity” of the dynam-
ics confers a fundamentally different perspective compareto
the yet abundantly studied synchronization networks of limit
cycle oscillators. Indeed, interactions of the DHL type offer
the possibility to drive the dynamics into a global (identical
for all Ok ’s), stable oscillatory state which, once reached,
remains “frozen” even when the interactions are removed. This
final oscillatory behavior shared by allOk ’s will be called the
consensual oscillatory state. In this context, a (non-exhaustive)
list of natural issues, to be addressed in this paper, will be:

1) How to calculate the circulation parameterizationωc(t)



characterizing the final consensual state ?
2) How does the consensual circulation parameterization
depend on the Laplacian matrix associated to network ?
3) How does the network influence the convergence rate
towards the the final consensual state?

In this contribution, we propose, in section II, the construction
of an analytically soluble class of coupled oscillators with
mutual interactions leading to a DHL rule. A paradigmatic
illustration of this class of dynamics is thoroughly studied
in section III where explicit and fully analytical answers to
questions 1) to 3) can be given. Future research perspectives
and conclusion will be found in section V.

II. CONSTRUCTION OF ADHL DYNAMICAL NETWORK

The collection{Ok}
N
k=1 of oscillators will be chosen to

belong to the class of mixed canonical-dissipative systems
which we briefly expose in II-A.

A. Mixed Canonic-Dissipative systems

A member of our collection{Ok}
N

k=1 will be defined as:

Ok

{
ẋk =

ẏk =

+ωk
∂Hk

∂yk

−ωk
∂Hk

∂xk
︸ ︷︷ ︸

conservative evolution

+

+

gk(Hk)∂Hk

∂xk
,

gk(Hk)∂Hk

∂yk
,

︸ ︷︷ ︸

dissipative evolution

(2)

whereHk : R2 → R+ andgk : R+ → R. TheHk ’s functions
areC2 and positive definite and play the role of Hamiltonians
(i.e. energy). In the sequel, we shall assume thatHk(xk,yk) =
Ek uniquely defines a set of closed (concentric) curvesLk(Ek)

in R2 that surrounds the origin. Thegk’s functions areC1 and
gk(Hk(xk,yk)) are non-conservative terms which, according
to the value ofHk, feeds or dissipates energy from the
Hamiltonian system. In particular, ifgk(Hk(xk,yk)) vanishes
for Hk(xk,yk) = Ek, the dynamics is purely conservative (i.e.
only thecanonical part drives the dynamics) and we therefore
have:

Hk(xk,yk) = Ek defines thelimit cycle Lk(Ek)

with
Lk(Ek) :=

{
(x, y) ∈ R

2|Hk(x,y) = Ek

}
.

The stability of theLk(Ek)’s will be determined by:

gk(Hk) > 0 in Ak

gk(Hk) < 0 in R2 \ Āk
⇒ Lk(Ek) is stable,

gk(Hk) < 0 in Ak

gk(Hk) > 0 in R2 \ Āk
⇒ Lk(Ek) is unstable,

(3)

where Ak stands for the interior ofLk(Ek), (i.e. Ak :=
{(x, y) ∈ R2|Hk(x,y) < Ek}). Therefore, forgk(Ek) = 0 and
whenLk(Ek) is stable, the energy-type controlgk(Hk(xk,yk))
drives all orbits towards the stable limit cycleLk(Ek) which
is hence an attractor. The system defined by Eqs.(2) belongs
to the general class of mixed canonical-dissipative dynamics

(MCD) (c.f [2], [3] and [4]). In the sequel, we shall make use
of the short hand notation:

Pk(xk, yk, ωk) := +ωk

∂Hk

∂yk

(xk,yk)+gk(Hk(xk,yk))
∂Hk

∂xk

(xk,yk),

Qk(xk, yk, ωk) := −ωk

∂Hk

∂xk

(xk,yk)+gk(Hk(xk,yk))
∂Hk

∂yk

(xk,yk).

Observe that in Eqs.(2), we restrict our study to non-parametric
MCD for which ωk are constant.

Having defined the individual dynamics, it is now time to
characterize the interactions.

B. Network of diffusively coupled oscillators

The interactions between the MCD’s given by Eqs.(2) will
be realized via a simply connected networkN with N edges
without loop (i.e. its adjacent matrixA is such that, for thejth

edge,Aj,j = 0, j = 1, 2, . . . , N andAi,j ∈ {0, 1} for j 6= i).
Let L be the associated Laplacian matrix, namelyL = A−D,
whereD is the diagonal matrix withDj,j being the degree of
edgej. Accordingly, we now consider the dynamics:

Ok

{
ẋk =

ẏk =

Pk(xk, yk, ωk)

Qk(xk, yk, ωk)
︸ ︷︷ ︸

MCD

+

+

Ckx

Cky
︸ ︷︷ ︸

diffusive coupling

(4)

with Ckx andCky reading as:

Ckx := ǫ1(x, y)

N∑

j=1

Lk,jxj and Cky := ǫ2(x, y)

N∑

j=1

Lk,jyj ,

where0 ≤ ǫl(x, y) < ǫ, l = 1, 2 not simultaneously vanishing
andx := (x1, . . . , xN ), y := (y1, . . . , yN ).

Finally, we now introduce the DHL process into the dynamics.

C. Dynamic Hebbian learning for Mixed Canonic-Dissipative
systems

Directly inspired from Eqs.(1), we now propose our gener-
alized DHL in the context of Eqs.(4). The dynamical system
is given by:

Ok







ẋk =

ẏk =

ω̇k =

Pk(xk, yk, ωk) + Ckx,

Qk(xk, yk, ωk) + Cky,

Kk[Dy Ckx − Dx Cky],
︸ ︷︷ ︸

DHL mechanism

(5)

where

Dy := η1(x, y)

N∑

j=1

∂Hj

∂yj

,

Dx := η2(x, y)
N∑

j=1

∂Hj

∂xj

.

with 0 ≤ Kk ≤ κ is a set of learning coupling strengths and
0 ≤ ηl(x, y) ≤ η, l = 1, 2 are not simultaneously vanishing.



Observe at this point that the dynamics defined by Eqs.(5)
exhibit the salient features of the basic model given by Eqs.(1).
We namely have:

a) whenCkx = Cky = 0 and for appropriate choices
of the gk(Hk(xk,yk)) terms, (see Eq.(3)), the dynamics
exhibits a stable limit cycleLk,
b) on the limit cycleLk, the dynamics obeys a (conser-
vative) canonical Hamiltonian motion,
c) a DHL type mechanism explicitly affects the circula-
tion parameterizationωk(t) of the orbits onLk.

For simplicity and without lost of generality, in what follows
we shall systematically takeǫ1(x, y) = ǫ2(x, y) = 1 and
η1(x, y) = η2(x, y) = 1 in Eqs.(5).

Proposition 1: Let Kk > 0, for all k in the system defined
by Eqs. (5). Then:

J :=

N∑

k=1

ωk(t)

Kk

(6)

is a constant of the motion.
Proof:
N∑

k=1

ω̇k

Kk
=

N∑

k=1

Dy Ckx −
N∑

k=1

DxCky

= Dy
N∑

k=1

N∑

j=1

Lkjxj − Dx
N∑

k=1

N∑

j=1

Lkjyj

= Dy
N∑

j=1

xj

N∑

k=1

Lkj − Dx
N∑

j=1

yj

N∑

k=1

Lkj

= 0.

where the last equality identically vanishes due to the diffusive
character of the coupling matrixL.

Proposition 2: Assume that we have a collection of identi-
cal MCD systems (i.e.Hk ≡ H for all k) admitting, in absence
of coupling, the same stable limit cycleLc := Lk(Ec) for all k

(i.e. for a fixed energy levelEc common to all oscillators, we
suppose thatgk(Ec)) = 0 for all k). Then, the synchronized or-
bit given byS(t) := (xs(t), ys(t), ωc, . . . , xs(t), ys(t), ωc) ∈
R3N , with ωc = constant and with:

g(H(xs(t),ys(t))) = g (Ec) = 0, (7)

is an exact solution of the dynamical system defined by
Eqs.(5).

Proof: For the synchronized orbit, we havexk(t) =
xs(t), yk(t) = ys(t) andωk(t) = ωc(t) for all k. The diffusive
nature of the coupling, implies that the termsCkx = Cky = 0
and thereforeω̇k(t) = 0. Hence, theωc(t) are identically a
constant written asωc.

So far, we have introduced a globally non-conservative dy-
namical systemR3N given by Eqs.(5) for which an explicit

orbit S(t) is known. In addition, our dynamics possesses one
constant of the motionJ given by Eq.(6). One therefore may
now question whether the orbitS(t) corresponds to a stable
solution of the globally non-conservative dynamics. As usual,
by linearizing the dynamics aroundS(t) produces information
regarding its stability - this will be explicitly performedin
section III for systems with an underlying circular symmetry.
At this stage and to make head on, assume thatS(t) is
indeed a stable solution of the dynamics given by Eqs.(5)
and that we havelim

t→∞
ωk(t) = ωc for all k. Hence,ωc

corresponds to theconsensual circulation parameterization
on the common limit cycleLc. In this case, Proposition 1
and 2 provide explicit answers to questions 1) and 2) raised
in the introduction. Indeed, Eq.(6) enables us to write:

if lim
t→∞

ωk(t) = ωc then
N∑

k=1

ωc

Kk

=

N∑

k=1

ωk(0)

Kk

and therefore, we end with:

ωc =

N∑

j=1

ωj(0)
Kj

N∑

j=1

1
Kj

. (8)

From Eq.(8), we then conclude that the consensual circulation
parameterizationωc depends on the distribution of initial
conditions {ωk} and on the coupling strengthKk for k =
1, 2..., N but does not depend on the coupling matrixL
and therefore not on the topology of the coupling network.
However, we shall see thatL directly affects the convergence
rate towards the consensual orbitS(t).

III. N ETWORK OF COUPLEDHOPF OSCILLATORS

In this section, we focus on the situation whereHk ≡ H for all
k and where the underlying Hamiltonian reads asH(x, y) =
H(x2 + y2) = H(r2). The circular symmetry implies that
the consensual limit cycleLc is a circle and the circulation
is a uniform rotation with the consensual frequency given by
Eq.(8). Due to the cylindrical symmetry, it is advantageousto
express the dynamics in polar coordinates:

Ok =







ṙk = 2(1 − r2
k)rk +

N∑

j=1

Lk,j cos(φk − φj))

φ̇k = −2ωk − 1
rk

(
N∑

j=1

Lk,jrj sin(φk − φj))

ω̇k = Kk

[
N∑

l=1

(
N∑

j=1

Lk,jrlrj sin(φl − φj))

]

.

(9)
Note that in the non-parametric case (i.e. whenωk(t) = ωk),
the phase dynamics in Eqs.(9) coincides with the Kuramoto
model in presence of a general coupling network as discussed



in [5]. Here, the exact solution of Eqs. (9) on which perturba-
tions will now be added, simply reads as:

Spc(t) = (rs(t), θs(t), ω(t), . . . , rs(t), θs(t), ωs(t))
= (1,−2ωct, ωc, . . . , 1,−2ωct, ωc) ∈ R

3N .
(10)

Rearranging the variables in Eqs.(9) by using the permutation
3(k − 1) + n 7→ N(n − 1) + k (k = 1, . . . , N n = 1, 2, 3)
and linearizing aroundSpc(t) enables us to write:





ρ̇

δ̇

ǫ̇



 =





L − 4Id O O

O L −2Id
O −2 [K] L O









ρ

δ

ǫ



 (11)

where Id is the identity matrix,[K] is a diagonal matrix with
K1, K2, . . . , KN on the diagonal and whereρ := (ρ1, . . . , ρN ),
δ := (δ1, . . . , δN ) andǫ := (ǫ1, . . . , ǫN ) are perturbations. To
fulfill the conservation law given by Eq.(6), we further impose
the that:

N∑

j=1

ǫj(0)

Kj

= 0, (hereKk is constant for allk). (12)

To explicitly exhibit the influence of the network, we focus
on the case whereKk := K for all k. SinceL is symmetric,
then there exists an orthogonal matrixV such thatV ⊤LV is a
diagonal matrix[λ] with its spectrum{λk}

N
k=1 on the diagonal.

The network being connected, there exists a uniquej such that
λj is zero and the rest of the spectrum are all strictly negative.
Without lost of generality, we assumeλ1 = 0. Changing the
basis of the system by means of a(3 × 3)-bloc matrix with
V ⊤ on its diagonal, gives us:






˙̃ρ
˙̃
δ
˙̃ǫ




 =





[λ] − 4Id O O

O [λ] −2Id
O −2K[λ] O









ρ̃

δ̃

ǫ̃



 . (13)

The upper left(N ×N)-bloc in Eqs.(13) hasN real negative
eigenvalues and the rest of the system is described by the
following (2 × 2)-blocs:

(
˙̃
δk

˙̃ǫk

)

=

(
λk −2

−2Kλk 0

)(

δ̃k

ǫ̃k

)

. (14)

For k = 1, we have:

˙̃
δ1 = −2ǫ̃1 ˙̃ǫ1 = 0.

This is a direct consequence of the conservation law Eq.(6)
and on the restriction imposed by Eq.(12). Fork 6= 1, the
eigenvalues of the System 14 are:

α± =
1

2
λk ±

1

2

√

λ2
k + 16Kλk < 0.

For a simple, connected graph, the spectrum{λk}
N

k=1 is
negatively defined (c.f. [6]) which ensures an (exponential)
asymptotic convergence to the consensual state. More pre-
cisely, we have a stable focus forλk ∈ ] − 16K, 0[ and a

All to All Crystal

All to One

Fig. 1. Three types of network topologies with respective Fiedler number
F(·): “All to All” ( FAtA = −5), “Crystal” (FCry = −3) and “All to One”
(FAtO = −1).

stable node forλk ∈ ] − ∞,−16K[. The relaxation time is
given byτrelax = F−1 whereF is the algebraic connectivity
(i.e. the Fiedler number - c.f. [7]) of the coupling network.
Remember thatF is the largest, non-vanishing, eigenvalue of
the associated Laplacian matrix.

IV. N UMERICAL SIMULATIONS

In Figures 2, 3 and 4, we report numerical simulations
performed with five Hopf oscillators defined whenH(x, y) =
x2 + y2 andg(H) = 1−H . Three different topologies of the
interaction network are considered: “All to All”, “Crystal”and
“All to One” (c.f. Figure 1).

The learning mechanism can be observed in Figures 2, 3
and 4 and the final consensual frequency is given by Eq.(6).
All three figures have the same time scale so that we can fully
appreciate the fact that the convergence ratesρ(·) clearly obey:

FAtA < FCry < FAtO ⇒ ρAtA > ρCry > ρAtO.

The smaller the Fiedler number, the faster the convergence
and thus, the convergence rate does explicitly depend on the
topology of the network.

V. CONCLUSIONS AND PERSPECTIVES

Among the numerous possibilities of implementing the DHL
learning rule, networks of limit cycle oscillators with adapting
frequencies offer a yet unexplored research topics with poten-
tial for applications. In this note, we are able to explicitly
appreciate the interplay between the DHL learning rule on
one hand and the connectivity of the underlying interaction
network on the other hand. In particular, the possibility to
analytically calculate the consensual circulation parameteri-
zation (c.f. Eq.(6)) characterizing the circulation of thefinal
common attractor and the observation that the the topology of
the network participate only to the convergence rate are truly
remarkable features. At this preliminary stage, we do not yet
offer a complete and mathematically rigorous treatment of the
rich underlying dynamics.
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Fig. 2. Time evolution of the circulation parameterizationfor ωk(t) for
five Hopf oscillators withK1 = 1, K2 = 1
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ω1(0) = 9, ω2(0) = 5.35, ω3(0) = 6.5, ω4(0) = 5, ω5(0) = 7.7 and
with the network topology “All to All”. The consensual frequency, given by
Eq.(8), is hereωc = 7.
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Fig. 3. Time evolution of the circulation parameterizationfor ωk(t) for
five Hopf oscillators withK1 = 1, K2 = 1
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3
ω1(0) = 9, ω2(0) = 5.35, ω3(0) = 6.5, ω4(0) = 5, ω5(0) = 7.7 and with
the network topology “Crystal”. The consensual frequency,given by Eq.(8),
is hereωc = 7.
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Fig. 4. Time evolution of the circulation parameterizationfor ωk(t) for
five Hopf oscillators withK1 = 1, K2 = 1

2
, K3 = 5

4
, K4 = 5, K5 = 1

3
ω1(0) = 9, ω2(0) = 5.35, ω3(0) = 6.5, ω4(0) = 5, ω5(0) = 7.7 and
with the network topology “All to One”. The consensual frequency, given by
Eq.(8), is hereωc = 7.

Several open questions among which the characterization of
the basin of attractionB of the consensual state, by con-
structing ad hoc Lyapunov functions, remain to be discussed.
In particular, the dependence ofB on the set of coupling
parameters{Kk}

N

k=1 and for coupling networks which can be
modeled by multi-edge graphs remain yet to be unveiled.
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