Networks of Mixed Canonic-Dissipative Systems
and Dynamic Hebbian Learning

Julio Rodriguez
Ecole Polytechnique Fédérale de Lausanne
STI/ IMT / LPM1
Lausanne 1015
Switzerland
Email: julio.rodriguez@epfl.ch

Abstract—We consider a collection {O,}1_, of interacting
parametric mixed canonical-dissipative systems, (MCD). Each in-
dividual Oy, exhibits, in absence of interaction, a limit cyclel;,
on which the orbit circulation is parameterized by wy(t). The
underlying network defining the interactions between theOy’s
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plasticity to reflect the fact that, once this deformation is
realized, it definitely subsists even if the external inpsit i
removed. This generic behavior can be qualitatively under-
stood by the fact that the external perturbing signal griylua

is assumed to possess a diffusive Laplacian matrix. For each affects the circulation parameterizatianon the limit cycle
Ok, we construct a class of position- and velocity-dependent £, (for Eqs.(1),£ := {(z,y) € R?|2? + y? = 1}), but leaves

interactions which lead to a dynamic learning process of the
Hebbian type (DHL). More precisely, the interactions affet¢ the
circulation parameterization wy(¢t) and the DHL mechanisms
manifests itself by asymptotically driving the system toweds
a consensual (oscillatory) global state in which allO; share a
common circulation parameterization w.. It is remarkable that
for our class of interactions, we are able to analytically ckulate
we Which, in our case, is independent of the topology of the
connecting network. However, the coupling network topolog
explicitly controls the relaxation rate via the spectral gg of the
underlying adjacency matrix (i.e. the so calledFiedler number
of the associated graph). Finally, we report several numecal
illustrations which enable to observe the DHL mechanisms at
work and confirm our theoretical assertions.

the shape of. essentially invariant.

The core of the present paper is to substitute in Egs.(1) the
role played by the external signal by the dynamics delivered
by other limit cycle oscillators and then, to study the réagl
mutual DHL process. More generally, we will consider a col-
lection {ok}ﬁzl of independentmixed canonical-dissipative
systems (MCD) as introduced in [2] and [3], which exhibit
limit cycles £, and different individualo, (¢), k = 1,2,..., N
on L. The action of dissipative mechanism is to stabilize the
orbits on £, and the canonic part of the vector field (i.e. its
Hamiltonian part) is responsible for the circulation on kit
cycles. In our class of models, the mutual interactions betw

Keywords— mixed canonic-dissipative systems, limit cycles the O,’s are characterized by:

oscillators, dynamic Hebbian learning, consensual statediffusive
coupling, Laplacian matrix, algebraic connectivity.

I. INTRODUCTION

In a recent paper [1], L. Righetti et al. show how to
implement what they call a Dynamic Hebbian Learning (DHL)

process by coupling nonlinear parametric oscillators vaith
external time-dependent signal. As a paradigmatic iléitn,

they consider an non-autonomous parametric Hopf osadillato
(HO), defined, in its phase space, by the system of equations:

T = Hwy+ (1  — y2) x + esin(t),
HOC v = —wzx+ (1 —x? - y2) 1, ()
w = esin(0(t))sin(Qt),
wheree is a small positive constantin({2t) externally per-

a) a network A/ of diffusively coupled O,’s - i.e. the row
elements of the associated Laplacian coupling matrix of
the network add to zero.

b) a dynamic Hebbian learning mechanism (DHL). We
allow the wi(¢t) to behave as additional variables and
we implement couplings between these variables with
the whole dynamics. Qualitatively speaking, the DHL
coupling rule essentially affects the circulation parame-
terization on the limit cycle€; while keeping the shape
of L, approximately unchanged.

The DHL process and the resultingléasticity” of the dynam-
ics confers a fundamentally different perspective compare
the yet abundantly studied synchronization networks oftlim
cycle oscillators. Indeed, interactions of the DHL typeeoff

turbs the basic dynamics of the HQ {s a positive constant) the possibility to drive th_e dynamics into.a global (ideatic
and whered(t) := arctan(%). The DHL process manifestsfor all Oy’s), stable oscillatory state which, once reached,

itself by the fact that the circulation parameterizatiore.(i
here the basic frequency of the underlying HO)t) does,

remains “frozen” even when the interactions are removeis Th
final oscillatory behavior shared by dl;;'s will be called the

asymptotically converge, t€, the frequency of the externalconsensual oscillatory state. In this context, a (non-exhaustive)

input signal. In other words, the external signpldstically”

deforms the original limit cycle dynamics. We speak about

list of natural issues, to be addressed in this paper, will be
1) How to calculate the circulation parameterizatioii)



characterizing the final consensual state ? (MCD) (c.f[2], [3] and [4]). In the sequel, we shall make use
2) How does the consensual circulation parameterizatiohthe short hand notation:
depend on the Laplacian matrix associated to network ? OH,, OHy,
3) How does the network influence the convergence rekes (Tk, Y, wi) == 'H'uk8—%(mkvyk)"i_gk(Hk(mk’yk))8—M(wk’yk)7
towards the the final consensual state? '
In this contribution, we propose, in section Il, the constien Q. (v, yx, wk) := 7wk%(zk,yk)+gk(Hk(xk,yk))@(zk,yk).
of an analytically soluble class of coupled oscillators hwit Oz Oy
mutual interactions leading to a DHL rule. A paradigmati©bserve that in Egs.(2), we restrict our study to non-pateame
illustration of this class of dynamics is thoroughly stutlieMCD for which wy, are constant.
in section 11l where explicit and fully analytical answers t
questions 1) to 3) can be given. Future research perspectiaving defined the individual dynamics, it is now time to
and conclusion will be found in section V. characterize the interactions.

Il. CONSTRUCTION OF ADHL DYNAMICAL NETWORK B. Network of diffusively coupled oscillators

The collection{®;},_, of oscillators will be chosen to ~The interactions between the MCD's given by Egs.(2) will
belong to the class of mixed canonical-dissipative systerf§ realized via a simply connected netwdvkwith N edges

which we briefly expose in 1I-A. without loop (i.e. its adjacent matris is such that, for thg'”
edge,A,;; =0,j=1,2,...,N and 4, ; € {0,1} for j # 7).
A. Mixed Canonic-Dissipative systems Let L be the associated Laplacian matrix, namely- A — D,

A member of our collectio{ O, }r_, will be defined as: WhereD is the diagonal matrix wittD; ; being the degree of
edgej. Accordingly, we now consider the dynamics:

{ ik o= twegs o+ ge(Hi) G,

Oy, S o)+ O

] = ., 9Hk H.)2He 2 ) Ty = LTk, Yk, Wk k

Yk Wi Oxy + gk( k) Yy’ k yk = Qk(zk, ykawk) + Cky (4)
conservative evolutiondissipative evolution T diffumpnng

where . : R* — R* andgy, : R — R. The Hy’s functions ith ¢, and Cyy reading as:

areC? and positive definite and play the role of Hamiltonians N N

(i.e. energy). In the sequel, we shall assume figtz,y,.) =
&, uniquely defines a set of closed (concentric) cueg,) % = c1(,y) ZL’W%’ and Ciy := ea(2,y) ZLkvjyﬂ"

in R? that surrounds the origin. Thg's functions areC'' and =1 =1
gr(Hg(zx,yx)) are non-conservative terms which, accordinghere0 < ¢ (z,y) < ¢, [ = 1,2 not simultaneously vanishing
to the value of H;, feeds or dissipates energy from th@ndz := (z1,...,2zn), ¥y := (y1,-.-,YN).

Hamiltonian system. In particular, i (Hy(zx.yx)) vVanishes

for Hy(zx,yx) = &k, the dynamics is purely conservative (i.eFinally, we now introduce the DHL process into the dynamics.

only thecanonical part drives the dynamics) and we therefore
y P y ) C. Dynamic Hebbian learning for Mixed Canonic-Dissipative

have:
systems
Hy.(zrur) = € defines thdimit cycle Li(ex) Directly inspired from Egs.(1), we now propose our gener-
with alized DHL in the context of Egs.(4). The dynamical system
Lr(Ex) 1= {(I,y) c R2|Hk(z,y) _ gk} ' is given by:
e . . i = P b b + C )
The stability of thely e:)’'s will be determined by: a.ck (ks Yoy k) ke
Oy I =  Qr(Tr,yr,wi) + Cry, 5)
H djk = Kk[Dy Ckx — Dx Cky],
9k(Hy) > 0/in A§ ~ = L& is stable -
gr(Hg) < 0in R2\ A DHL mechanism
(H) < 0in A (3 where N
ge(Hg) <0In Ap ; OH,
gu(Hy) > 0in R2\ 4, = Fw(&n is unstable Dy:=mwy) Y- 52,
j=1 ~%

where A, stands for the interior ofCy (&), (i.e. Ax :=
{(x,y) € R?|Hy(z,y) < E}). Therefore, forg, (1) = 0 and N

when L (&) is stable, the energy-type contr@l( Hy(zx,ux)) Dz = na(,y) Z Oz
drives all orbits towards the stable limit cyci®,(,) which =1

is hence an attractor. The system defined by Egs.(2) belongth 0 < K; < k is a set of learning coupling strengths and
to the general class of mixed canonical-dissipative dynami0 < »;(x,y) < 7, I = 1,2 are not simultaneously vanishing.

<
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Observe at this point that the dynamics defined by Eqgs.@bit S(¢) is known. In addition, our dynamics possesses one

exhibit the salient features of the basic model given by @3s. constant of the motio given by Eq.(6). One therefore may

We namely have: now question whether the orhfi(¢) corresponds to a stable
a) whenCyz = Cjy = 0 and for appropriate choicessolution of the globally non-conservative dynamics. Asalsu
of the gi(Hy(=1.ux)) terms, (see Eq.(3)), the dynamicdy linearizing the dynamics arourd{t) produces information

exhibits a stable limit cycleCy, regarding its stability - this will be explicitly performeih

b) on the limit cycleLy, the dynamics obeys a (consersection Ill for systems with an underlying circular symnyetr
vative) canonical Hamiltonian motion, At this stage and to make head on, assume th@d is

c) a DHL type mechanism explicitly affects the circulaindeed a stable solution of the dynamics given by Egs.(5)
tion parameterizationy (t) of the orbits onz;. and that we havelim w(t) = we for all k. Hence,w,

For simplicity and without lost of generality, in what folle corresponds to theonsensual circulation parameterization
we shall systematically take;(z,y) = ex(x,y) = 1 and on the common limit cycle £.. In this case, Proposition 1
m(z,y) = n2(z,y) = 1 in EQgs.(5). and 2 provide explicit answers to questions 1) and 2) raised
in the introduction. Indeed, Eq.(6) enables us to write:
Proposition 1: Let Ki > 0, for all £ in the system defined

by Egs. (5). Then: v

N
. . We wi(0)
N if lim wg(t) =w. then —— = g
w(t) oo " ¢ K K
J = 6 — Rg — k
;;:1 Ky (6) k=1 k=1
is a constant of the motion. and therefore, we end with:
Proof: N o)
N N N > K
ZE—’; = ZDkax—ZD,TCky WCZL. (8)
k=1 k=1 k=1 N
N N N N 3 KL
= Dy > > Lijw; — Dz 3> > Lijy; i=1
k=1j=1 k=1j=1
N N N N . .
_ From Eq.(8), we then conclude that the consensual circulati
= D Ly, —D L
y;::l T kzz:l & xjgl Yi k; ki parameterization. depends on the distribution of initial

= 0. conditions {wy} and on the coupling strengthK;, for k =

1,2..., N but does not depend on the coupling matrixL

and therefore not on the topology of the coupling network

m However, we shall see thdt directly affects the convergence
rate towards the consensual or8ift).

where the last equality identically vanishes due to theudiffe
character of the coupling matrik.

Proposition 2: Assume that we have a collection of identi- I1l. NETWORK OF COUPLEDHOPF OSCILLATORS

cal MCD systems (i.etl, = H for all k) admitting, in absence |n, this section, we focus on the situation whéfg = H for all

of coupling, the same stable limit cycl®. := Ly (c.) forall k1. 3nd where the underlying Hamiltonian readsfagr, y) =

(i.e. for a fixed energy levef, common to all oscillators, we H(z2? + y*) = H(r?). The circular symmetry implies that

suppose thagy (¢.)) = 0 for all k). Then, the synchronized or-the consensual limit cyclg€, is a circle and the circulation

bit given by S(t) := (2s(t), ys(t), we, - -, #s(t), ys(t),we) € s a uniform rotation with the consensual frequency given by

RN, with w, = constant and with: Eq.(8). Due to the cylindrical symmetry, it is advantagetmus
express the dynamics in polar coordinates:

g(H@swysw)) =g (&) =0, (7)

is an exact solution of the dynamical system defined by N
Egs.(5). e = 2(1—r3)rk+ Y Lk, cos(gr — ¢5))

Proof: For the synchronized orbit, we have,(t) = NJ':1
xs(t), yr(t) = ys(t) andwy (t) = w.(t) for all k. The diffusive _ b — 9w, — L L o sin(bn. — &
nature of the coupling, implies that the terfisz = Cry = 0 Or =9 & BT (J; baTs Sin(dr = ¢5))
and thereforeJ;(t) = 0. Hence, thew,(t) are identically a ) N N )
constant written as,. ] wrp = Kg l;(jzl Ly jrirj sin(ér — ¢5))

©)

Note that in the non-parametric case (i.e. whest) = wy),
So far, we have introduced a globally non-conservative dihe phase dynamics in Egs.(9) coincides with the Kuramoto
namical systenR3" given by Egs.(5) for which an explicit model in presence of a general coupling network as discussed



in [5]. Here, the exact solution of Egs. (9) on which perturba
tions will now be added, simply reads as:

Spe(t) = (rs(t),0s(t),w(t),...,rs(t),0s(t), ws(t))
= (1, —2wct,we, ..., 1, —2wct,w.) € RN,
(10)
Rearranging the variables in Eqgs.(9) by using the pernartati
3k—1)+n—Nn-1)+k(k=1,...,N n=1,23) Allto All Crystal

and linearizing around,.(t) enables us to write:

p L — 4ld (0] (@) P
5| = 0 L —21d § | (1)
é ©) —2[K]L O €
where Id is the identity matrix,K] is a diagonal matrix with All'to One
Ki,Ka,..., Ky on the diagonal and whege:= (p1,. .., pn),
0 = (51, . ,5N) ande := (61, e, €N) are perturbations_ To Fig. 1. Three types of network topologies with respectivediér number
fulfill the conservation law given by Eq.(6), we further imggo 7() Al © All" ( Fan = —5), “Crystal” (Fery = —3) and "All to One”
the that: (Fao = ~1).
o~ €(0)
Z 6'7K =0, (hereKyis constant for alk). (12) stable node for\;, €] — 0o, —16K[. The relaxation time is
=1 given by 7., = F ! whereF is the algebraic connectivity

To explicitly exhibit the influence of the network, we focudi-€- the Fiedler number - c.f. [7]) of the coupling network.
on the case wherK;, := K for all k. Since L is symmetric, Remember thaf is the largest, non-vanishing, eigenvalue of
then there exists an orthogonal mattixsuch that’ T LV is a the associated Laplacian matrix.

diagonal matriX\] with its spectrur‘r{/\k}ffz1 on the diagonal. IV. NUMERICAL SIMULATIONS

The network being connected, there exists a unjgsiech that_ In Figures 2, 3 and 4, we report numerical simulations

ﬁerformed with five Hopf oscillators defined whéh(z, y) =
2?2 +y% andg(H) = 1 — H. Three different topologies of the
interaction network are considered: “All to All", “Crystaind
“All to One” (c.f. Figure 1).

The learning mechanism can be observed in Figures 2, 3
and 4 and the final consensual frequency is given by Eq.(6).

Without lost of generality, we assumg = 0. Changing the
basis of the system by means of(&x 3)-bloc matrix with
VT on its diagonal, gives us:

p A —4d O 0 p
s 1= 0) (Al —21d 5 |. (13) Allthree figures have the same time scale so that we can fully
¢ 0) —2K[\] O ¢ appreciate the fact that the convergence ratglearly obey:
The upper left N x N)-bloc in Egs.(13) hasV real negative Fan < Fey < Fao = paa > pery > pao-
eigenvalues and the rest of the system is described by #ige smaller the Fiedler number, the faster the convergence
following (2 x 2)-blocs: and thus, the convergence rate does explicitly depend on the
. ~ topology of the network.
A -2 1)
( O ) = ( _2&\ 0 ) ( " ) (14) V. CONCLUSIONS AND PERSPECTIVES
€k k €k — . .
Among the numerous possibilities of implementing the DHL
For k = 1, we have: learning rule, networks of limit cycle oscillators with giiang

frequencies offer a yet unexplored research topics witkerpot
tial for applications. In this note, we are able to explicitl
This is a direct consequence of the conservation law Eq.@preciate the interplay between the DHL learning rule on
and on the restriction imposed by Eq.(12). For# 1, the one hand and the connectivity of the underlying interaction

5 = —2¢ & =0.

eigenvalues of the System 14 are: network on the other hand. In particular, the possibility to
1 1 analytically calculate the consensual circulation patanie
oy = 5)% + 5\//\% + 16KX\; < 0. zation (c.f. Eq.(6)) characterizing the circulation of tfeal

common attractor and the observation that the the topolbgy o
For a simple, connected graph, the spectrwoc}],f:1 is the network participate only to the convergence rate aifg tru
negatively defined (c.f. [6]) which ensures an (exponentiaemarkable features. At this preliminary stage, we do not ye
asymptotic convergence to the consensual state. More poéfer a complete and mathematically rigorous treatmenhef t
cisely, we have a stable focus for, €] — 16K,0[ and a rich underlying dynamics.



Learning rate (five HO — All to All connected)

Fig. 2. Time evolution of the circulation parameterizatitor wy (¢) for

five Hopf oscillators withK; = 1, Kz = 1, K3 = 3, K4 = 5, K5 = %

w1(0) = 9, wa(0) = 5.35, w3(0) = 6.5, ws(0) = 5, ws(0) = 7.7 and
with the network topology “All to All". The consensual fregocy, given by
Eq.(8), is herev, = 7.

Learning rate (five HO — Crystal connected)

Fig. 3. Time evolution of the C|rcu|at|on parametenzatltm wi (t) for

five Hopf oscillators withK; = 1, Ko = § Ks =7, Ka=5Ks = 3

w1(0) =9, w2(0) = 5.35, w3(0) = 6.5, wa(0) = 5, ws(0) = 7.7 and Wlth
the network topology “Crystal”. The consensual frequergiyen by Eq.(8),
is herew, = 7.

Learning rate (five HO — All to One connected)

Fig. 4. Time evolution of the circulation parameterizatitor wy (¢) for

five Hopf oscillators withK; = 1, Kz = 1, Kz = 3, K4 = 5, K5 = %

w1(0) = 9, wa(0) = 5.35, w3(0) = 6.5, ws(0) = 5, ws(0) = 7.7 and
with the network topology “All to One”. The consensual freqay, given by
Eq.(8), is heraev, = 7.

Several open questions among which the characterization of
the basin of attractior3 of the consensual state, by con-
structing ad hoc Lyapunov functions, remain to be discussed
In particular, the dependence & on the set of coupling
parameters{Kk}kN:1 and for coupling networks which can be
modeled by multi-edge graphs remain yet to be unveiled.
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