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Abstract— In this paper we present how to design very large 
scale oscillatory nonlinear mappings by using orthogonal filters 
which, due to spectrum based information processing, can be 
seen as implementations of holographic-like structures. 
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I. INTRODUCTION  
A number of experiments show that some cognitive 

functions of biological brains could be seen as holographic 
processes (see for example [1]). Hence, we believe that 
biologically motivated structures of artificial neural networks 
cannot rely on dissipative dynamical networks, with their 
different type of attractors, (e.g. chaotic attractors) or on 
multilayer feedforward neural networks trained by 
backpropagation algorithms. It seems that, at least for very 
large scale associative memories needed to implement 
cognition functions in great projects like Ersatz-Brain [2] and 
Cognitive Memory [3], the types of neural networks 
mentioned above are not adequate, as the attractor objects are 
too ‘fragile”. Moreover, multilayer neural networks, seen as 
implementations of nonlinear mappings, are not suitable for 
large scale problems. It is, however, worth noting, that the 
implementation of nonlinear mappings proposed in [4] and 
known as Regularized Least Squares Classification (RLSC), 
could be used for realization of very large scale associative 
memories. Relying on an RLSC approach, some novel 
structures of classifiers have been considered [5, 6, 7]. These 
structures are specific to using the Hamiltonian Neural 
Networks (HNN) based spectrum analysis, recognition and 
memorization, giving rise to the mapping of implementations 
with skew-symmetric kernels, as well. In this paper we present 
how to design very large scale nonlinear mappings of 
oscillator type, by using HNN, which, due to spectrum based 
information processing, can be seen as an implementation of 
holographic-like structures. 

 
 

II. ON MODELLING OF THE OSCILLATORY NEURAL 
NETWORKS 

To our knowledge, the fundamental research in the field of 
oscillatory implementation of neural networks has been done 
by Hoppenstead [9, 10, 11, 12]. Let us briefly review that an 
oscillator can by described be the following state equation: 

)(xfx =
•

, x ∈ Rm ,                          (1) 

and it is a nonlinear dynamical system with a limit cycle. 
Hence, a net of weakly coupled oscillators is given by: 
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, ε << 1, i = 1, … , n   (2) 

Synchronization phenomenon in such a network is one of the 
most challenging mathematical and engineering problems. 
According to [11], the sufficient conditions for 
synchronization in the net (2) can be formulated as follows:  
Transform the state space equation (2) onto phase equations: 
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where: Ωi – natural frequency of i-th oscillator (i.e. for ε = 0).  
 

Assuming a weak coupling of oscillators, the state equation 
and phase equation can be simplified, as follows: 
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    i = 1, … , n.         (5) 

Introducing  a phase deviation Ψi of i-th oscillator i.e.: 

φi = Ωit + Ψi                                       (6) 



and averaging over a period  T= 2π/Ω, the phase equation (5) 
can be formulated as:  
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        i = 1, … , n       (7) 

 
where nonlinear functions Hij; i, j = 1, … n determine time 
evolution of momentary frequency of coupled oscillators in 
the net. It is clear, that state of synchronization is given by 
equilibria of differential equations (7), i.e. : 
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where:  ∆ωi = Hii(0) is a deviation of natural frequency Ωi. 

For steady state of synchronization the equilibria have to be 
asymptotically stable. Unfortunately, the general solution of 
Eq.(9) is a nontrivial task, for n >> 1. In special case, under 
assumption that Hij(•) has a form: 

 

Hij(Ψi – Ψj) = H(Ψi – Ψj) = - sin(Ψi – Ψj)         (10) 

 

the solution of equation (9) can be analytically found. The 
above case is known and celebrated as Kuramoto model 
[11, 13]. For example, for n =2, Kuramoto model is given by:  
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where: τ = ε t. 

It is worth noting that, assuming equation (1) as a model of an 
oscillatory neuron, state equation (4) describes an oscillatory 
neural network, which can be synchronized, as shown above. 
But, it seems that synchronization alone insufficiently 
determines a neural network as an information processor. We 
claim that neural networks, to be treated as information 
processors, have to function as orthogonal filters. 

 

III. ON OSCILLATORY IMPLEMENTATION OF 
ORTHOGONAL-FILTERS 

The models of nonlinear mappings described in this paper 
rely on using Hamiltonian Neural Networks (HNN) based 
orthogonal filters. Let us note that HNN are nonlinear, 

dynamical structures composed of elementary lossless 
neurons. A basic d.c. model of a lossless neuron is shown in 
Fig.1 and its state space description is as follows: 
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where activation function  Θ(z) is passive and fulfills: 
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x - input data 
z – state vector 

-w

 z2

∫  

∫  

∫

Θ(z2) 

Θ(z1) 

+w

x1

x2

z1 z1 

z2 

Θ(z1)

Θ(z1)

 
 

Figure 1. D.C. model of lossless neuron. 
 
This model gives rise to the following notes:  
1. From the point of view of circuit theory, a lossless neuron 

can be treated as a loop connection of a nonlinear inductor 
and capacitor, forming a passive nonlinear oscillator. 
Moreover, looking for an analogy between circuit theory 
and mechanics, one could consider the above mentioned 
oscillator as an energy model of a relativistic particle. 
Indeed, taking into consideration the following classical 
relationships: 

•

= pF                                       (13) 
 

2

0
0 cm

p1m

pv(p)









+

=
 

 
(14)

where: F- external force  
p – momentum 
c – absolute velocity 
m0 - rest mass 
v – velocity (activation function) 

 
for free particle (F = 0), one obtains the basic model of a 
Hamiltonian particle, as shown in Fig.2 
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Figure 2. Model of Hamiltonian particle (“fermion”) 
 
 
Thus, Eq. (12) takes the following form: 
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Assuming, p1 = p2 = p, the whole internal energy stored in the 
particle shown in the Fig. 2. is given by Hamiltonian: 

 
Considering a linearization of function v(p), as shown in 
Fig.3.  
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Figure 3. Velocity in SRT. 

 
equation (16) takes  the following form: 

for   pmax = m0c  (see Fig..3.) 
E = 2 • 0.41 • m0c2 = 0.82• m0c2              (17) 

 

The classical amount of rest energy i.e., E0 = m0c2, is 
obtained only under the assumption that function v(p) is 
piecewise linear. The model of particle used in this 
consideration can be seen as a Hamiltonian oscillator. 
Solutions of Eq.(15) are periodical and are dependent on 
initial values of momentum. Thus, for example, a numerical 
solution   for   initial values:│p01│ = m0c, p02 = 0  or  
│p02│= m0c, p01 = 0 is presented in Fig. 4. 

 
 
 
 
 
 

 

 

 

Figure. 4. A numerical solution of dynamical system Eq (15) 
for p01 = 1, p02 = 0  m0 = 1, c =1 

H1max + H2max= 0.82• m0c2                                         
where 
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It can be seen, that the internal energy of a particle-
oscillator has a form of quanta. For external observers, this 
energy is not visible. In the case of  Eq.(15), force field is 
skew-symmetric, i.e., the internal forces are of 
“electromagnetic” type. However, this skew-symmetry can 
be easily changed into symmetry. Hence, the particle-
oscillator is a “connection”, via an internal “gravitation 
field” (symmetric), of matter (m > 0) and antimatter ( m < 
0). It is worth noting, that, by adequate interpretation of 
solutions (Fig.4.), one could easily obtain such objects like 
“spin” and “uncertainty”. But, such interpretation would 
guide us to exotic physics.  

2. A D.C. model of a lossless neuron can be, one-to-one, 
transformed into an oscillatory model, using two phase-
locked-loops (PLLs). Such a PLL based model is shown in 
Fig. 5
. 
 
 
 
 
 
 
 
 

Figure. 5. Oscillatory model of lossless neuron. 
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It is easy to see that the model in Fig. 5 (PLL model) consists 
of two antisymmetrically coupled sinusoidal phase oscillators. 
Input signals si(t), i = 1, 2 are sinusoidal carriers. Thus:  

 
si(t) = ACi sin(Ωit + Ψsi),                        (18) 
vi(t) = AVi cos(Ωit + Ψi); i = 1, 2.          (19)  

 
Assuming ideal transmittances of loop filters, i.e., G1 = G2 ≡ 1, 
the mean phase equation (Adler equation) of this model is as 
follows (keys k1, k2 open): 
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(20) 
where: ∆ωi - frequency deviations of input si(t) signal 

kVi, kmi – sensitivity of VCO and phase-detector, 
respectively 
Гi – input d.c. signal (i =1, 2) 

The similarity between equation (20) and Kuramoto model is  
worth noting. Closing k1, k2- keys in model from Fig. 5. one 
obtains an elementary PLL orthogonal filter described by: 

where assumed that connection matrix has a form: 

Wc =W – w01                                     (22) 
with                W2 = -1, WT = W-1 = -W                    (23) 

and w0  > 0    (W –skew-symmetric, orthogonal)      
 
Let us note that PLL implementation of the elementary 
orthogonal filter from Fig.5. can be  easily scaled up to n-
dimensional space. Such a generalization is shown in Fig.6. 
[7]. 
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Figure 6. PLL model of n-dim neural network 

The Adler equation of this model is given by: 

(24) 
where :  si(t) = ACi sin(Ωit + Ψsi) 
 vi(t) = AVi cos(Ωit + Ψi) 
 ∆ωi – frequency deviation 
 Гi – input d.c. signal  
 i = 1, … , n 

 
Equation (24) can be rewritten as: 

•

z = Wc sin z + ∆ω – Г               (25) 

where: z = [z1, … , zn]T = [ Ψs1 – Ψ1, … , Ψsn – Ψn]T 

 Wc – matrix of connections. 

It is worth noting that: 

1. The hold range of a PLL network is determined by 
the stable equilibrium of Eq.(25). It means that, for a  
given ∆ω and Г, one can find such loop gains 
(kvkmAcAv) that PLL network attains synchronization 
in point: │sin zi│< 1, i = 1, … , n. 

2. Under synchronization, the steady-state output of 
PLL network is given by: 

 
y = sin z = Wc

-1(Г – ∆ω).                (26) 

Taking connection matrix Wc as weight matrix in 
orthogonal filter, output y gives the Haar spectrum of 
the input vector. Moreover, the PLL network from 
Fig.6 can be treated as a n-dimensional F.M. signal 
demodulator. 

3. The PLL network from Fig. 6. can be seen as a model 
of a neural network with dynamical connections. The 
weight of connections can be changed by  parameter 
kv (i.e. sensitivity of VCO). 

 

IV. ORTHOGONAL FILTERS BASED NONLINEAR 
MAPPINGS 

Nonlinear functions or mappings approximation can be 
implemented by using HNN-based orthogonal filters, which 
perform spectrum analysis and memorization. Function 
approximation, as known from machine learning, starts with 
training data m

1i)y,( =iix , where input vectors xi ∈ X ⊂ Rn and 
yi ∈ Y ⊂ R. One synthesizes a multivariate function that 
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optionally represents the relation between the input xi and yi. 
We use here a kernel representation, i.e.: 
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where: c =[ c1, c2, … , cm]T, ci ∈ R 
 
and kernels KXi(x) are definite functions continuous on X x X. 
The weights ci are such, to minimize the error on the training 
set, i.e., they can be found from the equation: 
 

K c = y                                       (28)  
 

where: K is the square matrix with elements Ki,j= KXi(xj) and y 
is the vector with coordinates yi.  

 
For implementation of f(x), equation (28) has to be well-
posed. One of the most important positive–definite kernels is 
the Gaussian: 
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giving structure known as RBF. 
Generally, taking kernels as positive-definite functions, matrix 
K in Eq.(28) is positive-definite and hence Eq.(28) is well-
posed. Moreover, taking into account the Tikhonov 
regularization, Eq.(28) can be reformulated as a key algorithm 
for RLSC structure, as follows [4]: 

 
( mγ 1+K) c = y                              (29) 

 
where: γ > 0 and ( mγ 1+K) is strictly positive. 
The purpose of this paper is to show, how mappings, 
classifiers and associative memories can be implemented 
using HNN based orthogonal filters, which perform spectrum 
analysis. Spectrum analysis can be treated as a transform from 
input signal space into a feature space. Relying on RLSC 
approach, we propose to define here a skew-symmetric kernel 
Kui(v): 
 

Kui(v):= Θ(uT
i v)                                   (30) 

 
where:ui = (W-1) xi 

v = -(W+1) x 
Θ( • ) is an odd function( e.g. sigmoid) 
W2 = -1, WTW = 1 
w0 > 0 
ui, v – Haar spectrum of input xi and x, respectively 

Thus:  
Kui(vj)  = Θ(uT

i vj) = Θ(2xT
iW xj) 

and  
Kvj(uj) = - Kui(vj) 

Hence, matrix  

{ } { })(, jijia vKKK u==   is skew-symmetric 

As mentioned above, the key problem in design of the 
approximation is the solvability of linear equation: 
 

Ka c = y                                    (31) 
 
Since Ka is skew-symmetric, it needs to be regularized, 
making equation (31) well-posed. 
Hence, we propose the following regularization of matrix Ka: 
 

Kr = (γ 1 + Ka)                             (32) 
where: γ ≠ 0 
 
Then, the following design equation is well-posed for any  
m < ∞ (number of training vectors):  
 

Kr c = y                                  (33) 
 

One of possible architectures, implementing equation (27) 
with skew-symmetric kernels Ki,j is shown in Fig.7. 
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Figure 7. Structure of function f(x) approximator. 

 
Thus, the unknown function f((x) can be approximated by the 
structure from Fig.7. consisting of two HNN based spectrum 
analyzers and a set of m orthogonal filters memorizing the 
spectrum of m training points. It is easy to see that the 
activation functions Θ(•) of neurons should be endowed with a 
“superconducting impulse” γ, as shown in Fig. 8. 
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Figure 8. Activation function of neurons. 
 



Due to the properties of matrix Kr, a solution of key 
equation (33) exists for any number m of training points. It is 
clear that structure of the function approximator in Fig. 7, is 
based on oscillatory neural networks, as presented in Fig. 6.  

V.  DESIGN OF ORTHOGONAL FILTERS 
The main issue with the structure of the function 

approximator shown in Fig.7. is the design of the orthogonal 
filters. Such a design can be based on using the family of 
Hurwitz-Radon matrices. Indeed, a set of orthogonal, skew-
symmetric matrices Ak with the following properties: 
Aj Ak + AkAj = 0, Aj

2 = -1 for j ≠ k, k = 1, … , s are known as 
a family of Hurwitz-Radon matrices. Any family of Hurwitz-
Radon matrices (n x n) consists of smax matrices, where 
smax=ρ(n)-1 and Radon number ρ(n) ≤ n. ρ(n) = n for n = 2, 4, 
8, only. For our purposes the following statements on 
Hurwitz-Radon matrices could be interesting [15]: 
a.  The maximum number of continuous orthogonal tangent 

vector fields on sphere Sn-1 ⊂ Rn is ρ(n) –1. 
b. Let W1, …, Ws be a set of orthogonal Hurwitz-Radon 

matrices and w1, … , ws be real numbers: 
Then:  

 ∑
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is orthogonal and skew-symmetric. 
 
Matrix W from Eq.(34) can be used for creating the weight 
matrices of HNN. 
Thus, for example, matrix W for n = 8, 16, 32, … is given by: 
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where: w8, w9 ∈ R 
 

Hurwitz-Radon matrices for other n can be found elsewhere. It 
can be seen, that a basic component of matrix family  for 

n=8, 16, 32, … is an eight dimensional matrix. Hence, one 
obtains the following statement: Structures of orthogonal 
filters, used for realization of functions and mappings models 
(Fig.7), can be based on compatible composition of 8-dim. 
building blocks (octonionic modules). Octonionic module 
performs the following transformation: 
 

y = H8x                                         (36) 
 

where: x and y are 8-dim, input and output vectors, 
respectively. 
Transformation matrix H8 has a form: 
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where: columns  (and rows) constitute the orthogonal basis, 

i.e., the output vector y gives the Haar  spectrum of x. 
Moreover, for given x0 = [x1, … , x8]

T     and 
y0 = [y1, … , y8]

T one sets up so called best adapted 
basis: 
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It means that a given x0 is transformed into a given y0 
(x0 → y0) by the orthogonal filter with weight matrix given by 
Eq.(38). Thus, a classical perceptron performing a scalar 
product can be implemented by an orthogonal filter with best 
adapted basis (x0 → y0), as shown in Fig. 9.: 

 
Figure 9. Implementation of perceptron by orthogonal filter. 

It is worth noting that the implementation in Fig.9. relies on a 
linear summing of the output spectrum of the orthogonal filter. 
Orthogonal filters, used in Fig.7. for spectrum memorizing, 
have structure as shown in Fig.9., and they are implementable 
as oscillatory (PLL) octonionic modules.  
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Hence, one obtains:  

the overall structure from Fig.7. can be implemented by 
connection of oscillatory (PLL) octonionic modules. 

VI. SIMULATIONS 

As mentioned above, Eq.(24) and (25) describe the mean 
equation of a PLL network. But, in real implementations, the 
loop filters have to be taken into consideration. In other words, 
one has to pose a question: Is it possible to find such loop 
filters where full phase equation and Adler equation for PLL 
network are approximately the same? From an analytical point 
of view such a possibility exists, since a PLL network has a 
stable integral manifold [8]. This possibility has been 
experimentally proven by simulations using the makro-models 
of PLL, offered by Matlab-Simulink. 

Some simulations of octonionic modules have been 
performed by using a general PLL model from Fig.6.. Full 
analysis using Matlab-Simulink macro-models of phase-
locked loops, endowed with different loop filters, showed that 
algebraic transformation given by Eq. 36. can be, under 
synchronization, exactly performed by oscillatory structure. 
Moreover, this structure sets up an oscillatory memory cell, 
according to solution presented in Fig. 9. 

VII. CONCLUSION 

The main issue considered in this paper is the design of 
mappings. Mappings designed here rely on multivariate 
function approximations with skew-symmetric kernels, giving 
rise to very large scale classifiers and associative memories. 
Due to regularization, such classifiers and memories can be 
implemented for any even n (dimension of input vector space) 
and any m < ∞ (number of training patterns). Accuracy of 
classification depends on phase-space geometry of mappings. 
It can be changed by appropriate covering of the 
neighborhood of the approximation points. Kernels utilized in 
function and mapping approximation are implemented by 
using HNN based orthogonal filters. Thus, classifiers and 
memories, here designed, can exist as numerically stable 
algorithms or physical devices, performing their functions in 
real-time. Moreover, we have proposed oscillatory (PLL) 
implementation of mappings. Presented in this paper PLL 
neural networks can be seen as a special problem in the theory 
of coupled oscillators. To our knowledge, orthogonal filters 
based information processing can be considered as inspired by 
biological systems. 
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