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Abstract— This paper introduces a novel ensemble learning
approach based on recurrent radial basis function networks
(RRBFN) for time series prediction with the aim of increasing
the prediction accuracy. Standing for the base learner in this
ensemble, the adaptive recurrent network proposed is based
on the nonlinear autoregressive with exogenous input model
(NARX) and works according to a multi-step (MS) prediction
regime. The ensemble learning technique combines various MS-
NARX-based RRBFNs which differ in the set of controlling
parameters. The evaluation of the approach which uses two
known benchmark time series, Sunspot and chaotic Mackey-
Glass, includes a discussion on the performance of the individual
predictors and their combination.

I. INTRODUCTION

A temporal sequence is a set of finite set of discrete items
linked or correlated in time. Items may be scalars or vectors.
Essentially time series can be classified into 3 types: deter-
ministic, stochastic, chaotic [1]. In deterministic time series,
the items and their order are specified with 100% certainty.
Typically, stochastic time series result from measuring the
behavior of some dynamic systems for which the observed
variability has random noise as a basic component. On the
other hand, while similar to stochastic time series, in chaotic
time series the observed variability is not due to noise, but
to nonlinear interaction among the variables of the underlying
deterministic system.

In learning temporal (and spatial) sequences for predictions
purposes, recurrent neural networks have attracted a lot of
attention. There exist a number of studies showing different
neural architectures and relying on different learning models,
i.e., supervised, unsupervised and with reinforcement. While
supervised learning recurrent algorithms seem to be the most
popular ones [2], [3], unsupervised learning (i.e, clustering)
has witnessed increasing attention especially with the advent
of self-organized maps and vector quantization networks [4].
Reinforcement on the other hand has been applied for time
series in a smaller number of studies [5].

Temporal relationship often are captured using feedback
connection in neural networks. This has resulted in a number
of architectures and have been classified in 3 main groups [6].
globally recurrent networks [2], locally recurrent networks [3]
and nonlinear autoregressive with exogenous input networks
(NARX networks) [7]. In the first class, hidden nodes provide
a context (hidden states) and are globally fed back as new
input. In locally recurrent networks, the feedback connections
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are allowed only from neurons to themselves (looped neurons).
In the NARX architecture, the output of the network are fed
back to the input layer.

In this paper we use a new adaptive NARX recurrent radial
basis function network as a prototypical base learner for an
ensemble learning approach. This neural network is called
a MS-NARX-RRBFN standing for multi-step NARX-based
recurrent radial basis function network. As will be described in
Sec. II, the aim is to construct parsimonious and flexible radial
basis function networks. To achieve such a gaol, the proposed
neural network is equipped with multi-step-ahead prediction
mechanisms and is totally self-adaptive in the sense that most
of the parameters defining its architecture are learned too.

In addition to the multi-step-ahead prediction strategy en-
dowing the radial basis function network during training, to
further enhance the prediction accuracy, a neural ensemble
(committee) predictor is devised. This ensemble is generated
by varying the MS-NARX-RRBFN allotting different settings.

Ensemble learning has recently attracted much attention due
to its ability to perform better than single learning model and
to discover regularities in dynamic and non-stationary data.
Ensemble methods aim at leveraging the performance of a set
of models to achieve better prediction accuracy than that of the
individual models. While in some literature sources, authors
refer to individual models as weak learners, it is however
necessary to have them as competent as possible [8]. This
is the approach taken in this paper. We aim at obtaining
a set of competent complementary decision makers. It is
worth stressing here to note that due to the non-stationarity
characterizing time series, prediction by means of committee
learners is indeed a very appealing approach.

The rest of this paper is organized as follows. Section II
describes the base learner used in this ensemble predictor.
Section. III introduces the ensemble predictor. In Sec. IV, the
evaluation of the proposed approach is discussed.

II. RECURRENT MULTI-STEP RBFN

Like multilayer perceptron, RBF neural networks are func-
tion approximators [9] able of learning to map a given input
set to its corresponding output set. In a RBF network, the
hidden units form a set of functions that compose a random
basis for the input patterns, hence the name of radial basis
functions [10]. They serve to perform a nonlinear transfor-
mation of the patterns into a high-dimensional space in order



to tackle the problem of pattern separability. An interesting
development stage of RBFNs is regularization that allows to
enhance the generalization of the network via interpolation
mechanisms in the high-dimensional space [11].

This generalization capability, however, depends largely on
the appropriateness of the model’s parameters, i.e. centers,
number, form, and width of the radial basis functions and the
learning algorithm used to train the network. As to this latter
aspect, several RBFN training schemes have been developed.
The known ones include gradient descent [10] and orthogonal
least square optimization [12]. Such training schemes may
involve learning the RBF parameters also. In fact, the centers
of the radial basis functions can be determined either by
clustering (and vector quantization) [13] or can along with
the radial basis widths be part of the training stage [10].

The number of radial basis functions depends on the data
and should be carefully selected. It can either a priori fixed
and remains static or dynamically set (i.e., centers are added or
deleted) in the course of training. To avoid such a problematic,
a criterion that defines the optimum number of basis functions
for the RBF networks has been introduced in [14]. Such a
criterion relies on Steins unbiased risk estimator to derive an
analytical criterion for assigning the appropriate number of
basis functions.

Moreover, there exists a set of basis functions that can be
used and for which the interpolation can be achieved. These in-
clude multi-quadratic, Gaussian, inverse multi-quadratic, thin-
plate spline, cubic and linear. These functions have been
compared on time series in [15]. The authors recommend to
try various basis functions with their range of widths to find
an optimal solution.

Motivated by these considerations about the network’s ar-
chitecture and the diversity of heuristics used to estimate
the network’s parameters as discussed earlier, it seems very
appealing to use ensemble learning to face such diversity and
tuning problems. The ensemble method we propose in this
paper relies on the NARX architecture of recurrent neural
networks. Compared to globally recurrent networks, in NARX-
based recurrent networks the states of the network are obtained
from the output layer not from the hidden layer. In terms of
complexity, NARX models are less dense since the size of
hidden layer is larger than that of the output layer. In the case
of time series, the output layer consists of only one neuron.

NARX-RRBEFN relies on the nonlinear autoregressive model
with exogenous inputs that is described by:
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where z(t) and y(t) are the input and output of the non-
linear system at time ¢, I’ is a nonlinear function, D, and D,
represent the order of the model. For time series, this model
is reduced to:

gt +1) = F(y(t),y(t —1),--- ,y(t — D)) 2)

where D is the size of a time window. In other terms, the time
series behavior can be captured by expressing the value y(t+1)

gt+1)=F(z(t+1), - ,z(t —

as a function of the D previous values of the time series,
(y(t) - - - (y(t—D)). Syntactically such behavior corresponds to
one-step prediction which “fits” the last D samples to estimate
the current value at time ¢. However, such a prediction scheme
may not provide enough information especially if one wants
to anticipate the behavior of the time series evolution.

To overcome this, NARX-RRBFN can be enhanced by
embedding a multi-step predictive model that offers the pos-
sibility to handle complex dynamics over a long period of
time. The idea underlying multi-step predictive model, as a
generalization of the one-step model, is that predicting at time
t + 1 requires to perform p prediction steps ahead into the
future, ie. y(t +1),---,4(t + p+ 1). Hence, the goal is to
approximate the function F' such that the model given by Eq. 2
can be used as a multi-step prediction scheme.

The mathematical formulation of multi-step prediction is as
follows:
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where p is called prediction horizon. Basically this formulation
can be unfolded as follows:
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which suggests that at any time ¢, predictions have to be
made based on the time interval [t + 1,¢ + p + 1] taking D
samples as input. Such input is split into two parts: context
input and external input. The context input stands for the
internal states of the network which are obtained from the
delayed network output. They memorize the context of the
current input by recalling information about the past. This
context provides the network the ability to handle long-term
predictions. Indeed for the sake of long-term predictions, the
multi-step approach adopted here allows the network to take
future sample change over a prediction horizon into account.
The external input represents the last samples seen by the
network preceding the current time ¢. Initially these samples
act as a window that represents the historical trend obtained
directly from the data. This means that the predicted network
output §(t + 1) at instant ¢ + 1 is sent back as input for the
next step prediction. The remaining input part corresponds to
the input values shifted ahead by one sample.

Graphically the multi-step NARX-RBFN is portrayed in
Fig. 1 and its unfolding architecture is portrayed as a cascade
of RBFNs in Fig. 2.

Basically the function F' in Eq. 3 has the form of

y(t =D +p),O) (5)
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where © is the parameter set of the model (C;, 2;, W) which
stands for the centers and widths of the radial basis functions
and the weights between the hidden and the output layers.

To define © = {v;,0,,w;}, the following performance
index has to be minimized:
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standing for the multi-step prediction error.

Since, the present work is about adaptive recurrent radial
basis function network, the weights, centers, and widths of the
radial basis functions are updated using the following gradient
descent rules:
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Unfolding the multi-step NARX-RRBFN

Recall that the output node is a linear combination of a set of
basis functions:

H
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where x; is the input vector with elements x;,, (where m is
the dimension of the input vector); v; is the center vector of
the basis function ¢;(.) with elements v;;; w; are the output
layer’s weights. The hidden nodes equipped with the basis
function ¢;(z;) are nonlinear, while those of the output are
linear.

The radial basis function takes different forms which we
will use in ensemble learning approach intended in this study.
These forms are shown in Tab. I. For the sake of simplicity we
omit the index (t+1) from Eq. 7. Therefore, §(t + 1+14) (resp.



TABLE I
RADIAL BASIS FUNCTIONS

Function Form
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Hence, the weight can be updated as follows:
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The last update operation is that of the width which requires:
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The MS-NARX-RRBF learning algorithm consists of the
steps shown in Alg. 1. For a particular base learner, the
architecture of the RRBF is kept fixed but the input layer is
dynamic. Just recall that at time ¢, the algorithm must predict
the time series values at instants t + 1,--- ,t + p + 1 during
which the number of external input nodes decreases from D41
to D + 1 — p while the number of context neurones increases
from O to p. Thus, initially the number of context nodes is
0 and the external nodes correspond to the input indexed by
t,---,t — D. Generally, at time t + ¢ to predict the future
t + i+ 1" time series sample, the context nodes receive
output corresponding to the predictions realized in interval
[t+1,t+1+4—1=¢+74] (i.e, the number of context nodes
is (t+14) — (t+1) =4 — 1, whereas the external input nodes
correspond to the time series samples indexed by time interval
[t —D+1i—1,¢] (since the window is of length D + 1). Note
that to learn the last p training samples of the time series, the
number of context nodes will not exceed T'—1 (since t+1i < T
must hold, where T is the size of the training data). On the
other hand, in this study p is set to value less D + 1, so that
we have at least one external input, otherwise all neurons in
the input layer will be context nodes.

Algorithm 1 : Training the multi-step NARX-RRBFN
1: - Initialize 71, 12, 13, the size of the hidden layer H, the
prediction horizon p, the window D (such that p <= D
to avoid learning exclusively from future predictions).

2: repeat

3: - Set the initial input window [y1,- - ,yp]

4: - Initialize the network: radial basis function type, initial
centers (V'), width (o) and the weights (W)
fort=D+1toT —1do

- Compute §(t + 1) = F(y(t),--- ,y(t — D))

for i =1 to p do
- Recursively predict the output §(¢+7+ 1) of the
current configuration of the NARX-RRBFN using:

Fgt+14),--- 9t +1),
y(0),--y(t =D +i—1))

9: - Update the parameter set © = {V, X, W} ac-
cording to Egs. 12,14, 10 respectively

10: - Update the input sequence at the input layer

11: end for

12 end for

13: until Stopping criterion is met

® W

git+i+1) =

III. ENSEMBLE LEARNING

Radial basis function neural networks are universal non-
linear function approximators with a controllable complexity.
They are known for their prediction power. However, due to
the diversity and the definition range of their parameters, the
performance of these neural networks may vary strongly. To
alleviate the effect of parameter setting, it seems appealing to
combine in a symbiotic way several predictors. The idea is that
even if the performance of one or few neural networks may
not be that much satisfactory, the ensemble of the algorithms
can still predict the correct output. Usually, when the task
is relatively hard, multiple predictors are used following the
conquer-and-divide principle [16].

Ensemble learning has been mostly applied for classification
problems. However, recently a certain number of studies pro-
pose their application for time series forecasting problems. For
instance, an ensemble learning based on feedforward neural
networks has been proposed in [17] for time series forecasting.
In [18], the ensemble combines radial basis function networks
and the Box-Jenkins models. In [19], a combination genetic
classifiers is proposed for predicting stock indexes, while
in [20], a hybrid combination of neural networks and the
ARIMA model is applied for time series forecasting. In [21],
an ensemble of Elman networks combined by Adaboost is
proposed for predicting drug dissolution profiles. Similar work
has been investigated in [22] relying on Adaboost and its
variants such as Adaboost.R proposed in [23].

It is important to note that most of the studies rely on one
scheme that is classifier combination trained on different data
sets. In this scheme several classifiers, each trained on ran-
domly generated sets (re-sampling from a larger training set)



TABLE I
DIVERSITY CRITERIA

Value set

{Gradient descent}

{Fitting mixture of Gaussians
using EM)}

{Multi-quadratic, Gaussian, in-
verse multi-quadratic, cubic}
{Gradient descent}

{Gradient descent}

{Globally recurrent}

Parameter
1-  Learning
2-  Number of RBFs

3-  Type of RBFs

4-  Width of RBFs
5-  Center of RBFs
6- RBFN Architecture

TABLE III
COMBINATION RULES

Rule Expression

0i(z) = L 2N, 0)(2)

Average Rule N

Max Rule (optimistic) Od(x) = mava:lof ()

Min Rule (pessimistic) Ol (z) = minf-\]:1 Og (z)

are combined to perform the classification or regression task.
These include stacking [24], bagging [25] and boosting [23].

In this study we rather focus on a different scheme that is
combination of different classifiers [16], [26]. According to
this scheme, the classifier ensemble contains several classi-
fiers of different types (neural networks, decision trees, etc.),
of different parameters (e.g. in multi-layer neural networks:
different number of hidden layers, different number of hidden
neurons, etc.), or trained using different initial conditions (e.g.
weight initialization in neural networks, etc.) The application
of such scheme is not well studied in the context of time
series. For instance, in [26], an ensemble learning model using
the fuzzy k-nearest neighbor classifier as a base classifier is
proposed. K-nearest neighbor classifier is also used in [27]
but combined with multi-layer perceptron, nearest trajectory
models and some polynomial models.

In our study we focus on recurrent radial basis functions
adapted to the NARX architecture and working in a multi-
step prediction regime shown in Alg. 1. This ensemble of
recurrent neural networks are mainly diversified according to
the architecture, type of radial basis function, the initialization
of the weights, and the initial position of the radial basis
functions (see Tab. II). As already mentioned, there exist many
ways the individual NARX-RBFFN can be combined. In the
present study, we consider the rules shown in Tab. III.

IV. NUMERICAL SIMULATIONS
A. Benchmarks

In this study, we will rely on two major data sets to evaluate
the proposed approach. These are the sunspots and the chaotic
Mackey-Glass time-series datasets. The former contains the
yearly number of dark spots on the sun from 1700 to 1979.
The time series has a pseudo-period of 10 to 11 years. In
many studies, the training set includes the time series from
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1700 to 1920, while the testing set consists of two subsets,
1921-1955 (testl) to be used here and 1956-1979 (test2).
The chaotic Mackey-Glass time-series are generated by the
following nonlinear differential equation:

dx(t) 0.2*x(t—T)

E - o —SERO T
* 1+210(t—r)

7 x(t) +

15)
The initial conditions used in our test bench are set as 2(0) =
0.8 and t = 17. These are set so in order to conduct a
comparative study against other approaches using the same
benchmarks.

B. Experiments

To assess the proposed approach, we study two aspects:
(1) the prediction accuracy of the individual networks, (ii) the
accuracy of their combination following the the four types
of radial basis functions on both data sets: the sunspots and
the chaotic Mackey-Glass time-series. For the sake of the
evaluation, the root mean squared error (RMSE) measure is
used to quantify the goodness-of-fit. It is given by:

SN (y(i) — §(3))?
RMSE = \/ N

Before starting the evaluation of each of the individual
NARX-RBFNN, it is important to check the effect the key
parameters that characterize the proposed NARX architecture.
Basically, these parameters include the time window size (D)

(16)
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used for training the networks and the prediction horizon (p),
and the number of radial basis functions. Figures 5 and 6 show
the effect of the two parameters on the prediction root mean
square error for both data sets.

The observed trend from these figures is that for the sunspot
time series, small window size is preferred. In fact, when D =
3, a least root mean square error is obtained. In the case of
Mackey glass data set, there is no clear trend window size,
though larger sizes seem to be preferred. On the other hand,
small size of the prediction horizon is preferred for both data
sets. These results are consistent with the variability of time
series. Indeed, the variability of Mackey-glass, that is 0.0556,
is far smaller than that of sunspot (1554.20). Therefore, it is
important to set the window time in the case of sunspot also
smaller than that applied to the Mackey-glass time series.

This experiment has allowed to estimate the near-optimum
D and p(in a certain range of values). In the next experiments,
we will consider Dsunpot =3, DMackey =9, Psunpot = 2,
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and PMackey = 2.

On the other hand, to find the optimal number of radial
basis functions used by the neural networks, we have used the
Bayesian Information Criterion (BIC) to judge the statistical
significance of a number of inspected finite mixture models.
We do that by relying on the expectation maximization al-
gorithm. The highest BIC value corresponds to the optimal
number of radial basis function.

As expected, the BIC increases as the number of clusters
increases. However, a significant increase is obtained after
setting the number of clusters to 48 in the case of Mackey
glass data and 56 for the sunspot data. This has also been
noticed when computing the root mean square error as shown
in Figs. 7 and 8 for the case of Gaussian radial basis function
as an illustrative example. Therefore, we have considered 60
and 50 clusters for sunspot and Mackey glass respectively.

Applying the set of NARX-RBFNNs under the optimal
conditions (i.e., optimal number of radial basis functions,
size of the time window, size of the prediction horizon) on
the training and testing data of both data sets, we obtain
Figs. 9, 10, 11, and 12. These show how good the fit is.



TABLE IV
COMBINING THE NARX-RBFNNS (RMSE)

Sunspot Mackey Glass
Train Test Train test
Gaussian 1.2613 | 0.2603 | 0.5119 | 0.6782
Radial basis functions Multiquadratic 1.3660 | 0.2653 | 0.6636 | 1.0302
Inverse multiquadratic | 1.3350 | 0.2643 | 0.7696 | 1.1985
Cubic 1.4385 | 0.2654 | 0.6590 | 1.2293
Max rule 1.3551 | 0.2399 | 0.7277 | 1.1631
Combination rules Min Rule 1.4010 | 0.2784 | 0.7240 | 1.1866
Average 1.2401 | 0.2231 | 0.5040 | 0.5999
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the combination rules portrayed in Tab. III yields the results
shown in Tab. IV with respect to both data sets. The accuracy
of the ensemble is much higher compared to each of the Fig. 12. Testing the individual NARX-RBENNS - sunspot
individual predictor. The average rule is the best combination
rule. Comparing the individual NARX-RBFNNS on these two
particular time series, it seems that the Gaussian radial basis
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function produces more accurate fitting.

V. CONCLUSION

The present paper deals with a new method of time series
predictions based on multiple predictors. Each of these is
a multi-step nonlinear autoregressive with exogenous input
model (NARX) radial basis function network. Relying n two
time series, the experiments have shown that the combination
improves the prediction accuracy. However, it is still necessary
to conduct further experiments with a larger sets of time series
in order to thoroughly assess the approach suggested in this
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